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10Be/9Be and 26Al/10Be Support a Late Miocene Burial Age for 
Basal Gray Fossil Site Sediments

William E. Odom1*, Darryl E. Granger2, and Steven C. Wallace3

 
Abstract - We provide 2 independent radioisotopic age estimates for cored basal sediments of the 
Gray Fossil Site using cosmogenic nuclides. The first estimate uses meteoric 10Be/9Be from the bot-
tom of the GFS-1 core, as well as from modern local grasses, to constrain the deposition of basal 
GFS sinkhole complex sediments to 6.60 ± 0.85 Ma. We corroborated this age estimate using in-situ 
10Be and 26Al in quartz sands from the GFS-1 core. This estimate provided a looser constraint than 
the 10Bemet/9Be approach, yielding a minimum burial age for the basal sediments of 4.43 ± 0.34 Ma. 
These independent geochronometers provide evidence that the deepest GFS sediments are at least 
early Pliocene in age, and likely date to the late Miocene. 

Introduction

	 The Gray Fossil Site (GFS) is a sinkhole complex located in Washington County, Ten-
nessee (36.3859°N, 82.4987°W), that was discovered in 2000 during a Tennessee Depart-
ment of Transportation (TDOT) construction project. It was subsequently preserved be-
cause it hosts a notably diverse late Cenozoic fossil assemblage in eastern North America, 
including fungi (Worobiec et al. 2018), plants (Gong et al. 2010; Hermsen 2021, 2023; 
Huang et al. 2014, 2015; Jiang and Liu 2008; Liu and Jacques 2010; Liu and Quan 2019; 
Ochoa et al. 2012; Quirk and Hermsen 2020; Siegert and Hermsen 2020; Worobiec et al. 
2013; Zobaa et al. 2011), amphibians (Boardman and Schubert 2011; Gunnin et al. 2025), 
reptiles (Bourque and Schubert 2015; Jasinski 2018, 2022; Jasinski and Moscato 2017; 
Jurestovsky 2021; Mead et al. 2012; Parmalee et al. 2002), birds (Steadman 2011), and 
mammals (Czaplewski 2017; DeSantis and Wallace 2008; Doughty et al. 2018; Hulbert et 
al. 2009; Oberg and Samuels 2022; Samuels et al. 2018; Samuels and Schap 2021; Short et 
al. 2019; Wallace 2004, 2011; Wallace and Lyon 2022; Wallace and Wang 2004). Though 
the GFS hosts numerous late Neogene flora and fauna whose presence provides important 
evidence for interpreting climate and species patterns during this time (e.g., DeSantis and 
Wallace 2008; Fulwood and Wallace 2015; Liu and Quan 2019; Maclaren et al. 2018; Mc-
Connell and Zavada 2013; Ochoa et al. 2012; Schap et al. 2021; Schap and Samuels 2020; 
Wallace 2004, 2011; Wallace and Lyon 2022; Wallace and Wang 2004), the precise age of 
the site has only been proposed using biostratigraphy, with somewhat conflicting age esti-
mates derived from mammals (e.g., Samuels et al. 2018, Samuels and Schap 2021, Wallace 
and Wang 2004) and fossil pollen (e.g., Zobaa et al. 2011). Using in-situ and meteoric cos-
mogenic nuclide geochronology, we provide 2 independent radiometric ages for the filling 
of the GFS sinkhole complex.

1U.S. Geological Survey, Florence Bascom Geoscience Center, 12201 Sunrise Valley Drive, Mail 
Stop 926A, Reston, VA 20192. 2Department of Earth, Atmospheric, and Planetary Sciences, Purdue 
University, West Lafayette, IN 47907. 3Department of Geosciences and Don Sundquist Center of Ex-
cellence in Paleontology, East Tennessee State University, Johnson City, TN 37614. *Corresponding 
author - wodom@usgs.gov.
Associate Editor: Blaine Schubert, East Tennessee State University.
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Background

Sinkhole complex formation and filling
	 The GFS sinkhole complex lies within Cambrian–Ordovician dolomite of the karst 
landscape that dominates the Tennessee Valley and Ridge Province (Fig. 1; Rodgers 
1953). Gravimetric surveying by Whitelaw et al. (2008) revealed that the site consists 
of multiple sinkholes with depths up to ~35 m. The semi-linear trend of these sinkholes 
likely reflects joint-related dissolution. Though the formation age of the sinkhole complex 
itself is difficult to constrain, its filling with sediments and fossils during the late Ceno-
zoic has been intensively studied. Shunk et al. (2006, 2009) examined the stratigraphy 
of cores (GFS-1 and GFS-2) through the sinkhole complex and interpreted the site as a 
filled sinkhole lake on the basis of excellent depositional fabric preservation, a lack of 
bioturbation, and presence of framboidal pyrite. The frequency of articulated skeletons 
over much of the site also suggests a predominantly low energy lacustrine environment 
(Hulbert et al. 2009, Wallace 2004, Wallace and Wang 2004). Shunk et al. (2006, 2009) 
also noted centimeter-scale graded beds overlain by rhythmites in the lower sinkhole 
complex, which the authors interpreted as a transition to a wetter period. Keenan and 
Engel (2017) further supported the low energy interpretation, noting that the sediments 
were likely acidic, anoxic, and reducing when deposited.
	 Sediments filling the sinkhole complex appear to be from multiple sources (Shunk et 
al. 2006, 2009). Grain size distributions of quartz within GFS-1 and estimates from flow 
velocity diagrams suggest that the core was located near the paleo-lake’s inlet, and that 
low-energy fluvial transport was responsible for delivering sediments to the site (Shunk et 
al. 2009). This conclusion is supported by a general westward coarsening of sediments, in-
dicating that most sediment flux was from the sinkhole complex’s western side. Shunk et al. 

Figure 1. Location of the Gray Fossil Site in the context of major physiographic provinces of the 
southern Appalachian Mountains. A Blue Ridge provenance has been inferred for the sediments fill-
ing the Gray Fossil Site sinkhole complex (Shunk et al. 2006). Province polygons adapted from U.S. 
Environmental Protection Agency (2013).
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(2006) also noted that some quartz grains had features consistent with Blue Ridge Province 
provenance (namely beta outlines, embayments, and resorption rims) that point to local and 
regional sources for the sediments filling the GFS basin. 

Biostratigraphy
	 While the lacustrine depositional setting and Blue Ridge Province sediment provenance 
of the GFS fill have been generally accepted, the timing of its filling has been revised with 
emerging biostratigraphy (e.g., Samuels and Schap 2021, Samuels et al. 2018). Based on 
varve-like stratigraphy in GFS-1 and GFS-2, Shunk et al. (2009) estimated that the sink-
hole complex filled geologically quickly over a period of 4.5–11 kyr. During infilling, a 
diverse biota died and was preserved in the upper layers of the sinkhole complex (Shunk et 
al. 2006). Ongoing discoveries of vertebrates with independently constrained emergence/
extinction timelines have permitted increasingly precise age estimates for the site. Wal-
lace and Wang (2004) produced one of the first age estimates, suggesting a broad age of 
7–4.5 Ma based on the presence of Teleoceras (Rhinoceros) and Plionarctos (Short-faced 
Bear). Subsequent changes in the accepted boundary of the Hemphillian Land Mammal age 
(Behrensmeyer and Turner 2013, Tedford et al. 2004), potential extensions of the range of 
Teleoceras (Farlow et al. 2001, Gustafson 2012, Madden and Dahlquest 1990, Martin 2021), 
and issues surrounding the records of Plionarctos (B. Schubert, Eastern Tennessee State 
University, Johnson City, TN, 2024, pers. comm.) draw attention to the limitations of only 
using a few taxa to constrain the age. 
	 Palynological analysis by Zobaa et al. (2011) focused on the GFS-1 core. The authors 
provided significantly older estimates, concluding based on fossil palynomorphs that most 
of the sinkhole complex was deposited in the Paleocene–Eocene and subsequently covered 
with Miocene and younger sediments. This Paleocene–Eocene age was estimated from the 
early Cenozoic pollens Caryapollenites imparalis, Caryapollenites inelegans, and Carya-
pollenites prodromus. Zobaa et al. (2011) also inferred that the lack of Neogene grass pollen 
Poaceae could be consistent with a Paleocene–Eocene age, though it should be noted that 
some late Cenozoic pollen (Cupuliferoipollenites pusillus, Tricolporopollenites kruschii, 
Ulmipollenites undulosus, Caryapollenites simplex, Tubulifloridites antipodica, Pinuspol-
lenites strobipites, Malvacearumpollis mannanensis, Fraxinus Columbiana, Chenopodipol-
lis granulata, and Pseudoschizaea ozeanica) were also present. A closer look at the taxa 
present in their sample suggests that the interpretation of a truly Eocene age is not necessary 
to account for their observations.
	 Most recently, a Pliocene age of the sinkhole complex was proposed by Samuels et al. 
(2018) on the basis of rhinoceros, leporid, and cricetid remnants. Leporid and cricetid fos-
sils provide a maximum estimated age and date to the onset of the Blancan North American 
Land Mammal Age (4.9 Ma). Samuels et al. (2018) infer a minimum age of 4.5 Ma from 
the presence of the rhinoceros Teleoceras, but they note that Gustafson (2012) documented 
Teleoceras as young as 3.5 Ma in North America. One potential issue is that biostratigraphic 
reference sites do not all have radiometric and/or paleomagnetic age constraints (Carrasco et 
al. 2005; references therein). In many cases, the reference fauna have been dated via strati-
graphic or biostratigraphic correlation, rather than absolute techniques. More importantly, 
considering that most of these sites are located in western North America, the distances from 
reference fossil sites to the GFS leave open the possibility that the fauna at Gray did not live 
contemporaneously with their western counterparts. As such, considerable uncertainty still 
surrounds the age of the deposit and motivates direct radiometric dating of the site itself.
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Materials and Methods

Cosmogenic nuclide production and systematics
	 Cosmogenic nuclides are rare isotopes that are produced when high-energy cosmic radiation 
interacts with the atmosphere, initiating a chain of spallation reactions that break apart nuclei 
to produce new isotopes. These reactions cascade through the atmosphere to below the ground 
surface and are responsible for producing multiple types of cosmogenic nuclides, which include 
meteoric (a.k.a., “garden variety”), as well as in-situ isotopes (Lal 1988, Nishiizumi et al. 1986). 
The former, including 14C and 10Be, are produced in the atmosphere and are present in organic 
materials and rainwater (Arnold and Libby 1949, Lal 1988), whereas the latter, such as 26Al and 
10Be, are produced in rock at a rate on the order of 101–103 atoms per gram per year (Nishiizumi 
et al. 1989), and are therefore generally present in extremely low concentrations. Given that 26Al 
and 10Be are radioactive, and their production is sensitive to depth below the ground surface, 
they can serve as valuable indicators of weathering processes, water movement, rock exposure, 
and sediment burial (Granger et al. 1997, Lal and Arnold 1985, Morris 1991). 

Meteoric cosmogenic nuclides
	 Meteoric 10Be (10Bemet) is generally produced by spallation of atmospheric N and O (Lal and 
Peters 1967) and, upon reaching the Earth’s surface, mixes with 9Be liberated via rock weather-
ing processes (von Blanckenburg et al. 2012). At the surface, Be adsorbs onto soils as a function 
of acidity (Brown et al. 1992), so the 10Bemet/9Be ratio records information about environmen-
tal and weathering regimes (Graly et al. 2011, 2018; Singleton 2021; Singleton et al. 2017). 
Because much of the 10Bemet is retained in the upper part of the soil, but 9Be is released over a 
deeper weathering range, the 10Bemet/9Be ratio varies with depth (Maher and von Blanckenburg 
2016). Flora also incorporate beryllium as they uptake nutrients from soil (Moore et al. 2021) 
and have a 10Bemet/9Be ratio that is similar to the average 10Bemet/9Be ratio in soil over their root-
ing depth. Because 10Bemet is radioactive, with a meanlife of 2.005 ± 0.020 My (Chmeleff et al. 
2010, Korschinek et al. 2010), it can be used for dating over a range of up to ~8 My, given that 
the initial 10Bemet value can be reasonably constrained, following equation (1):

	 Where t is age and τ10 is the meanlife of 10Be. This approach was originally used for dating 
marine deposits such as ferromanganese nodules (e.g., Graham et al. 2004, Somayajulu 1967), 
assuming that the 10Bemet/9Be ratio in seawater was constant over time. Later, these same data 
were used together with independent geochronometers to test the hypothesis that the 10Bemet/9Be 
ratio in seawater was constant, and have been used to infer that global weathering rates have 
remained approximately unchanged over the past 10 My (Willenbring and von Blanckenburg 
2010). The 10Bemet/9Be ratio has also been used to date authigenic minerals in lake deposits, 
assuming that the lake water 10Bemet/9Be ratio was constant over time, notably to date Miocene–
Pliocene hominid-bearing deposits in Chad (Lebatard et al. 2010). 
	 Here, we are using 10Bemet/9Be to date soil sediments and vegetation that were deposited in 
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the GFS sinkhole complex and extracted from the lower GFS-1 core. Unlike marine or lacustrine 
settings, the beryllium comes from a soil reservoir that includes significant variability in the 
initial isotopic ratio, introducing uncertainty (Graham et al. 2001, Moore et al. 2021). Additional 
uncertainty arises because the fallout rate of 10Be varies through time due to changes in the geo-
magnetic field strength, as well as local or regional changes in precipitation (von Blanckenburg 
et al. 2012), the latter of which has been modeled for GFS (Schap et al. 2021). 

In-situ cosmogenic nuclides
	 In-situ 26Al and 10Be are produced when incoming neutrons and muons respectively fragment 
the Si and O in quartz (Gosse and Phillips 2001). Cosmogenic nuclide production is highest near 
the surface and falls off rapidly with depth, as cosmic radiation is attenuated by sediments and/
or bedrock (Lal 1988). Production of cosmogenic nuclides by neutrons is limited to the top few 
meters near the ground surface, while slower production by muons continues to depths of tens of 
meters (Balco 2017). To a close approximation, the production rate Pi for a given nuclide i can be 
expressed as the sum of exponentials, as in equation (2):
	

Where Ai,j and Lj represent the production rate factors and penetration length factors for neutron 
and muon components of production, respectively, and z represents depth (Granger 2014). For 
an eroding landscape, equation (2) can be integrated to calculate the concentration of cosmogenic 
nuclides that accumulate in a rock as it is exhumed to the surface (Lal 1991). For a steady rate 
of mass loss, the concentration Ni is inversely proportional to the denudation rate at the ground 
surface, with adjustments for radioactive decay during exhumation (Lal 1991), as in equation (3):

	 Where ρ is the density of quartz, E is the preburial erosion rate, and Λ is the penetration length 
factor. If sediment from the ground surface is then buried underground, such as at GFS, any 26Al 
and 10Be that accumulated prior to deposition will begin to decay. Because 26Al (τ26 = 1.021 ± 
0.024 My) (Nishiizumi 2004) decays approximately twice as fast as 10Be, the 26Al/10Be ratio of the 
cosmogenic nuclides inherited from the surface decreases over time and can be used to determine 
the time of deposition. However, there can be continued cosmogenic nuclide accumulation if the 
sediment is not buried deeply enough to be shielded from secondary cosmic ray muons. In that 
case, the total cosmogenic nuclide concentration Ni is governed by both radioactive decay of the 
inherited component and buildup of the post-depositional component, as in equation (4): 
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	 Where t is the burial age and Pi,z is the production rate at depth. The age of the deposit can 
be calculated by solving equation (4) for both 26Al and 10Be in a depth profile (Granger and 
Smith 2000) or in an isochron (Balco and Rovey 2008). In cases where the production rate at 
depth cannot be reliably modeled, it can be assumed to be zero to calculate a minimum burial 
age at each sampled location. Given the difficulty in modeling postburial production rates at 
this site, we calculated all in-situ burial ages as minima by setting P26,z = P10,z = 0 at/g/yr.
	 Both the in-situ and meteoric cosmogenic nuclide methods offer distinct advantages and 
disadvantages. Meteoric 10Be/9Be is typically present in relatively high concentrations in soils 
and plants and is, therefore, easy to measure. Moreover, the 2.005 My meanlife of 10Be may 
permit geochronology well into the late Miocene. However, constraining the initial ratio of 
10Bemet/9Be in a deposit can be difficult (Lebatard et al. 2010), and geochronologists may be 
limited to using 10Bemet/9Be in modern soils or plants, which are not a perfect analog. For in-
situ cosmogenic 26Al and 10Be, estimating the initial component – in this case, the inherited 
ratio of 26Al/10Be in a buried deposit – is more straightforward (Granger et al. 1997). However, 
the shorter half-life of 26Al means that 26Al/10Be burial dating is limited to the past 5–6 million 
years. Moreover, precise 26Al/10Be burial dating requires constraints on postburial production 
rates; while these rates can be readily modeled in homogeneous materials (Balco 2017), the 
irregular geometry of the sinkhole complex and variations in fill vs. bedrock density limit our 
ability to place upper constraints on sediment burial ages. We leverage the advantages of both 
approaches by measuring 10Bemet/9Be from the base of the GFS-1 core and in-situ 26Al/10Be in 
quartz at 8 intervals within the GFS-1 core to respectively obtain an absolute burial age for 
the basal sediments and 8 minimum burial ages throughout the core. 

Sampling
	 Sediment samples for 10Bemet/9Be and in-situ 26Al/10Be geochronology were collected 
from the GFS-1 core at depths spanning 0.8 to 36.3 m. Core access was provided by the 
Gray Fossil Site and Museum, East Tennessee State University. Meteoric sampling focused 
on the base of the core to capture the age of the oldest sediments, while the 26Al/10Be depth 
profile covered the length of the core. Because the greatest change in the in-situ production 
rate occurs in the upper few meters of sediment column, as production transitions from 
neutron- to muon-dominated spallation, we sampled shallow zones at closer intervals for 
26Al/10Be analysis. To constrain local initial 10Bemet/9Be ratios, we sampled modern grasses 
in undisturbed soils near Gray, Tennessee. All subsequent mineral separation, sample prepa-
ration, and analyses were performed at Purdue University.

10Bemet/9Be sample preparation
	 A sample of material from the base of the GFS-1 core at a depth of 36.2–36.3 m was analyzed 
for 10Bemet/9Be. The sample was extremely rich in organic material and plant fragments, which 
likely hosted much of the beryllium. 2.158 grams of oven-dried material were added to 25 ml 
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of 0.5 M HCl. It was disaggregated by ultrasonication and held at 80°C for 24 hours to dissolve 
adsorbed beryllium, then the solution was filtered of solids. 
	 A sample of grass clippings collected from the Gray, TN cemetery was used as an 
analog for the initial plant material in the GFS core. This site was chosen because it ap-
peared undisturbed, so the 10Bemet/9Be ratio in vegetation should best represent the value 
prior to modern land use. Oven-dried grass (19 grams) was digested in piranha solution 
(sulfuric acid with hydrogen peroxide). After digestion, hydrofluoric acid was added to 
dissolve silica phytoliths. The resulting solution was taken to dryness, then redissolved 
in 5% nitric acid and filtered of insoluble residue. 
	 For both the basal core and modern grass samples, half of the solution was taken 
for analysis of the total beryllium concentration by inductively coupled plasma – op-
tical emission spectrometry (ICP-OES), and the other half was taken for analysis of 
10Bemet/9Be by accelerator mass spectrometry (AMS). The AMS fraction was spiked with 
~270 micrograms of beryllium carrier prepared in-house from phenacite. The solution 
was adjusted to pH 14 with NaOH to remove most contaminants as insoluble hydrox-
ides by centrifugation, while amphoteric beryllium remained in solution. Beryllium was 
purified by ion exchange chromatography and selective precipitation, then converted to 
oxide by flame. The resulting oxide was mixed with niobium and loaded into a stainless-
steel cathode for analysis by AMS at the Purdue Rare Isotope Measurement (PRIME) 
Laboratory. 

In-situ 26Al/10Be sample preparation
	 Due to the compaction of the core material, high clay content, and small sample 
sizes, the samples required disaggregation prior to quartz separation. Samples were 
soaked overnight in concentrated nitric acid, rinsed, and mixed with sodium hexam-
etaphosphate to disaggregate clays. Particularly cohesive materials were placed in an 
ultrasonic bath to disaggregate blocks of clay and sand. Grains with diameters >0.5 mm 
were removed via sieve to eliminate most chert and carbonate fragments. Samples that 
contained abundant chert and carbonate material underwent pyrophosphoric acid treat-
ment following the methods of Mifsud et al. (2013) to preferentially attack non-quartz 
minerals. All samples were selectively dissolved in heated 1% hydrofluoric/nitric acid 
for 3 days on hot dog rollers to isolate the quartz fraction, and were assayed with ICP-
OES.
	 Each sample received ~270 μg of beryllium carrier, and those with <1 mg native 
aluminum content additionally received an Alfa Aesar ICP aluminum standard as car-
rier. Samples were subsequently dissolved in hot concentrated hydrofluoric and nitric 
acids. Following extraction of an ICP-OES aliquot for total (native + carrier) aluminum 
content, the samples were evaporated with concentrated sulfuric acid. The resultant so-
lution was diluted, mixed with 20 ml of 17% sodium hydroxide to remove Fe/Ti hydrox-
ides at pH 14, and rinsed. Following dissolution in oxalic acid, the Al/Be solution was 
separated via anion and cation exchange column chromatography. The Al and Be were 
then respectively dissolved in hydrochloric and nitric acids, evaporated, and converted 
to oxides via propane torch. The resulting powders were mixed with niobium and loaded 
into stainless steel cathodes for AMS measurement at the PRIME Laboratory (Caffee et 
al. 2021). Measurements were conducted alongside the standards of Nishiizumi (2004) 
and Nishiizumi et al. (2007).
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Results

Meteoric 10Be/9Be
	 In modern local grass, the 10Be concentration was (2.133 ± 0.037) ·107 at/g (1σ), and 
the 9Be concentration was 1.025·1015 at/g, yielding an initial 10Bemet/9Be ratio of (208.18 ± 
3.64) ·10-10  (1σ). Measurements of the core sample, in contrast, revealed (9.139 ± 0.088) 
·107 at/g of 10Be and 1.27·1017 at/g of 9Be, corresponding to a 10Bemet/9Be ratio of (7.20 ± 
0.07) ·10-10

 (1σ) (Table 1). Taken together, these measurements provide an age of 6.74 ± 
0.04 Ma (1σ) for the core’s basal sediments, when accounting for analytical uncertainty 
only (Table 2). 
	 Many factors contribute additional uncertainty. The fallout rate of 10Be at a site can 
vary due to changes in the magnetic field and precipitation rate over time; evidence for the 
latter has been noted by Schap et al. (2021) for North America as a whole. However, data 
from DeSantis and Wallace (2008) show that the precipitation around Gray at the time of 
its infilling was very similar to that of the region’s modern precipitation. The 10Bemet/9Be 
ratio in the soil depends on the weathering rate, which can change over time, as well as on 
soil depth. As a consequence, 10Bemet/9Be in modern vegetation can vary by 30% at a single 
site due to different rooting depths (e.g., Moore et al. 2021). Work by Graham et al. (2001) 
has demonstrated that 10Bemet/9Be in terrestrial materials (paleosols and loesses) from a 
given location can vary by ~5% over time. Given these possible variations, we assign a 
35% uncertainty in the initial ratio. This assignment provides a less precise age of 6.60 ± 
0.85 Ma (1σ) for the core’s basal sediments (Fig. 2 and Table 2). As such, the 10Bemet/9Be 
data support a late Miocene age for initial sedimentation in the GFS-1 sinkhole.

Table 1. Chemical data and AMS results of meteoric 10Be/9Be samples. Analyses of 10Be/9Be were nor-
malized to standard 07KNSTD (2.85•10-12) (Nishiizumi 2007). Reported values are blank-corrected. 
All uncertainties are reported at the 1σ level. Gray Grass was blank-corrected against Cblk 5559-1 
[AMS Cathode # 167134, 10Be/9Be = (0.00 ± 0.18) ·10-15], while ETSU 2021-10 was blank-corrected 
against NRC blank [AMS Cathode # 165329, 10Be/9Be = (6.64 ± 1.19) ·10-15].

Gray Grass ETSU 2021-10

AMS cathode # 167117 163900

Sample mass (g) 19.040 2.158

Dissolved mass (g) 20.758 19.259

ICP-OES aliquot mass (g) 10.448 9.961

AMS aliquot mass (g) 10.310 9.298

Native 9Be (μg) 0.147 2.118
9Be carrier (μg) 293.581 293.382
10Be/9Be (10-15) 10,280 ± 180 4864 ± 46

Blank-corrected 10Be/9Be (10-15) 10,280 ± 180 4857 ± 47

[9Be] (1015 at/g) 1.025 127.000

[10Bemet] (107 at/g) 2.133 ± 0.037 9.139 ± 0.088
10Bemet/9Be (10-10) 208.18 ± 3.64 7.20 ± 0.07
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In-situ 26Al/10Be
	 Concentrations of 26Al ranged from (0.3630 ± 0.0550) ·105 at/g (1σ) (GF-49A) to 
(2.6070 ± 0.1760) ·105 at/g (1σ) (GF-2A) (Table 3A), while 10Be concentrations ranged 
from (0.4270 ± 0.0500) ·105 at/g (1σ) (GF-35A) to (0.7270 ± 0.0510) ·105 at/g (1σ) (GF-
2A) (Table 3B). Blank corrections were generally low, although not negligible, ranging 
from 0.3–3.5% for 26Al measurements and 2.0–9.9% for 10Be measurements. The deepest 
sample (GF-49A), had 26Al and 10Be blank corrections of 3.2% and 2.3%, respectively. The 

Table 2. Calculated meteoric 10Be/9Be ages for analytical and external uncertainties. Analytical uncer-
tainties pertain to initial and final 10Bemet/9Be measurements, while external uncertainties only pertain 
to estimates of initial 10Bemet/9Be. All ages and uncertainties that incorporate external uncertainties 
also incorporate analytical uncertainties. These ages correspond to the sediments at 36.2–36.3 m.

Mean age ± 1σ uncertainty (Ma) Uncertainty type

6.74 ± 0.04 Analytical
6.74 ± 0.10 5% initial 10Bemet/9Be (Graham et al. 2001)
6.63 ± 0.69 30% local 10Bemet/9Be (Moore et al. 2021)
6.60 ± 0.85 35% total external uncertainty

Figure 2. Age diagram for 10Bemet/9Be chronology. In this plot, the line corresponding to a zero burial 
age is solid. Isochron lines at million-year increments are dashed. Our measurements of initial and 
final 10Bemet/9Be are plotted with different potential uncertainties for initial 10Bemet/9Be. A solid black 
ellipse shows analytical uncertainty only; gray ellipses show additional 5% uncertainty in continental 
10Bemet/9Be following Graham et al. (2001) and 30% local variation in 10Bemet/9Be following Moore et 
al. (2021); a red outline shows the cumulative analytical and external uncertainties.
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10Be and 26Al concentrations showed exponential relationships with depth (Fig. 3). Attempts 
to model the postburial production of 26Al and 10Be to obtain an absolute burial age for the 
GFS-1 core sediments were stymied by (a) poor constraints on the cosmic ray flux through-
out the sinkhole complex, which is influenced by the complicated geometry of surrounding 
bedrock, and (b) low concentrations of inherited cosmogenic 26Al and 10Be (Odom 2020). 
As such, here we report only minimum burial ages derived from in-situ cosmogenic 26Al 
and 10Be. Minimum burial age calculations for each sample depth (which are calculated as-
suming no postburial production of 26Al or 10Be) are provided in Figure 3 and Table 4, and 
ranged from 1.32 ± 0.20 Ma (1σ) at the shallowest sample location to 4.43 ± 0.34 Ma (1σ) 

Figure 3. In-situ cosmogenic nuclide concentrations and minimum burial age data throughout the 
GFS-1 core. Depths are listed from the top of the GFS-1 core, which was bored in an excavated area; 
as such, the listed depths are several meters shallower than they would have been for much of the 
deposit’s existence. Left: Concentrations of 26Al and 10Be with depth in the GFS-1 core. All uncertain-
ties shown are at the 1σ level. Right: Minimum burial ages (assuming no postburial production) of 
the in-situ samples from the GFS-1 core. Gray lines extend from the mean ± 1σ minimum burial ages 
to emphasize that these ages are only minimum bounds on the burial ages of the GFS-1 sediments. 
The infeasibility of modeling postburial production at this location precludes this study from placing 
maximum bounds on any of the 26Al/10Be burial ages.
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Table 4. Measured 26Al/10Be ratios and minimum burial ages (assuming zero post-burial production 
of 26Al or 10Be) for in-situ samples in the GFS-1 core. All uncertainties are reported at the 1σ level. 
Given the poorly constrained geometry of the sinkhole complex, estimates of postburial production 
rates and relevant maximum burial ages have not been included due to the poor age constraints they 
provide (Odom 2020).

Sample
name

GFS-1
depth (m)

Corrected
26Al/10Be

Minimum
burial age (Ma)

GF-2A 0.8 3.59 ± 0.35 1.32 ± 0.20

GF-5A 3.0 3.08 ± 0.23 1.65 ± 0.16

GF-8A 5.0 2.89 ± 0.25 1.78 ± 0.17

GF-10A 6.2 2.78 ± 0.26 1.84 ± 0.19

GF-19A 12.8 2.25 ± 0.28 2.27 ± 0.26

GF-26A 17.9 1.45 ± 0.21 3.21 ± 0.31

GF-35A 24.8 1.21 ± 0.27 3.61 ± 0.48

GF-49A 34.8 0.80 ± 0.13 4.43 ± 0.34

Figure 4. Results of 26Al/10Be and meteoric 10Be/9Be geochronology in the context of previous age 
estimates (Samuels et al., 2018, Wallace and Wang 2004) and the geologic timescale. Mean values 
are shown as black vertical lines and boxes are shaded to include ± 1σ uncertainties for cosmogenic 
nuclide ages. The oldest 26Al/10Be minimum burial age (4.43 ± 0.34 Ma), derived from the deepest in-
situ sample at 34.8 meters below core top, is shown. The sample from which this minimum burial age 
was derived experienced the least postburial production of 26Al and 10Be out of all the in-situ samples, 
and therefore should yield the most realistic minimum burial age. Its range of possible ages extends to 
infinity, as a maximum age cannot be modeled. The meteoric 10Be/9Be age (6.60 ± 0.85 Ma), derived 
from sample ETSU 2021-10, is plotted with 35% total external uncertainty.
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at the deepest sample location. This increase in minimum age with depth likely reflects de-
creasing postburial production, and neither necessitates nor excludes an upward-younging 
trend for the sediments. Based on 26Al/10Be data alone, however, it is clear that the burial of 
basal sediments at 34.8 m depth (sample GF-49A) dates to at least the early Pliocene and 
may have occurred earlier.

Discussion

Synthesizing meteoric 10Be/9Be and in-situ 26Al/10Be ages
	 The 2 cosmogenic nuclide geochronology techniques used in this study converge on a 
consistent burial age for the basal sediments in the GFS-1 core (Fig. 4). Deposition of the basal 
sediments is well constrained by the meteoric 10Be/9Be age of 6.60 ± 0.85 Ma, which repre-
sents an absolute age (i.e., one with younger and older bounds) for sediments at 36.2–36.3 
m depth. With 1σ external uncertainty, this age falls entirely within the late Miocene. The 
in-situ geochronology provides a looser constraint on sediment ages, given that maximum 
boundaries cannot be placed on 26Al/10Be burial ages due to difficulty modeling the postburial 
production of 26Al and 10Be. While exact rates of postburial production could not be modeled, 
it is reasonable to infer that the deepest in-situ sample, GF-49A, was least affected and would, 
therefore, yield a minimum burial age closest to its true burial age. This minimum burial age, 
4.43 ± 0.34 Ma, demonstrates that the sediments at 34.8 m depth were, indeed, at least early 
Pliocene in age. While this minimum age does overlap with recent biochronologic estimates 
for the uppermost GFS (Samuels et al. 2018), it is critical to note that this age is a minimum 
only, and that the maximum age remains unbounded to infinity. As such, it is also consistent 
with the meteoric 10Be/9Be age located less than 2 meters below it that places a late Miocene 
age on the basal sediments.

Revisiting an early Cenozoic age for the base of the GFS-1 core
	 Our data support a late Miocene age for the basal GFS-1 core sediments, contrasting 
with the observations of Zobaa et al. (2011) that estimated a Paleocene–Eocene age for the 
lower portion of the GFS-1 core. A re-examination of the palynological data presented in 
Zobaa et al. (2011) reveals the presence of several pollen types that were present during the 
late Cenozoic (Cupuliferoipollenites pusillus, Tricolporopollenites kruschii, Ulmipollenites 
undulosus, Caryapollenites simplex, Tubulifloridites antipodica, Pinuspollenites strobipi-
tes, Malvacearumpollis mannanensis, Fraxinus Columbiana, Chenopodipollis granulata, 
and Pseudoschizaea ozeanica) (White 2008 and references therein) that are consistent with 
our age finding. Zobaa et al. (2011) hypothesized that younger fossil pollen had percolated 
through cracks and fractures into the cored section, but it appears more likely that older pol-
len was preserved in the gradually eroding Cenozoic landscape and subsequently deposited 
in the sinkhole complex during the late Miocene.

Biostratigraphic considerations
	 Given that our data exclude a Paleocene–Eocene age and support a Neogene age for 
the lower sediments of the GFS-1 core, we consider the Neogene biostratigraphy that 
has thus far provided the most consistent age estimates for the uppermost sections of the 
deposit. The biostratigraphic age estimates for the Gray Fossil Site have generally cor-
responded to the late Miocene and early Pliocene. Using bear and rhinoceros fossils, Wal-
lace and Wang (2004) estimated that the deposit dated to 7–4.5 Ma, which includes both 
the late Miocene and early Pliocene. The later works of Samuels et al. (2018), Bōgner 
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and Samuels (2022), and Oberg and Samuels (2022) pointed to an early Pliocene age. Our 
most likely meteoric 10Be/9Be age indicates a late Miocene age for the basal sediments 
that underlie the fauna. It is possible that, if the sinkhole filled slowly or unconformities 
occurred in the sequence, the lower sediments could be late Miocene in age while the 
shallower sediments could date to the early Pliocene. 
	 Alternatively, it is possible that sinkhole filling rapidly transpired over several thou-
sand years during the late Miocene, as estimated by Shunk et al. (2009). In this case, 
perceived disagreements between faunal age estimates and cosmogenic nuclide geochro-
nology could be tied to the current constraints on fauna used for biostratigraphy, as well as 
the sensitivity of the cosmogenic 26Al/10Be and 10Bemet/9Be techniques to the surrounding 
environment. It is also possible that the fossil record employed by biostratigraphers at the 
GFS has underestimated the dates of first appearance for Alilepus vagus, Neotoma, Noto-
lagus lepusculus, and Symmetrodontomys fossils. Those taxa identified to the genus-level 
only could, in fact, represent new taxa, and those identified to species are far removed 
(geographically) from their closest counterparts. Given the existing data, however, it is 
not possible to determine the radiometric age of the fossil-bearing upper sinkhole depos-
its.

Conclusions

	 This study provides the first direct radiometric constraints on the age of the lower Gray 
Fossil Site deposit. Minimum burial ages derived from our 26Al/10Be measurements for 
the GFS-1 core strongly point to a minimum early Pliocene age, but cannot place definite 
upper bounds on the age of the sinkhole complex. This age estimate is further constrained 
by our 10Bemet/9Be age for the sinkhole complex’s basal sediments (6.60 ± 0.85 Ma), which 
falls within the late Miocene. It is difficult to determine whether the entire GFS deposit – 
and the biota within – dates to only the late Miocene, or if the deposit youngs upward into 
the early Pliocene. If the entire deposit is late Miocene in age, the GFS could potentially 
represent a “first appearance” site or unique transitional ecosystem (something between 
the Hemphillian and Blancan). Further geochronology in the form of additional 10Bemet/9Be 
measurements or paleomagnetic analysis could provide additional constraints on the age of 
the upper GFS and the biota within.
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