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The Nesting Ecology of Southern Two-lined Salamanders 
(Eurycea cirrigera) in Urban Streams

Leah T. Rittenburg1, Emma G. Downing1, and Todd W. Pierson1,*

Abstract – Urbanization alters many aspects of stream ecosystems, and its effects upon wildlife will 
likely increase as more watersheds become developed. This may be particularly true for species with 
complex life histories, which could be vulnerable in different life stages. Eurycea cirrigera (Green) 
(Southern Two-lined Salamanders) are common members of many stream communities in the south-
eastern United States, and they prefer to nest in cobble with little sedimentation—a microhabitat 
that is threatened by stream degradation. We collected data on the nesting ecology of this amphibian 
species in urban streams in Atlanta, Georgia, to evaluate microhabitat availability, nest-site selection, 
and the influence of impervious surface cover—a proxy for urbanization—upon nesting behaviors 
and life history parameters. We confirmed that these salamanders preferentially nest in shallow riffles 
with cobble, and we found higher embeddedness (i.e., the percentage of coarse substrate buried in or 
surrounded by fine substrate) and lower nest density in streams with higher impervious surface cover. 
We also found preliminary evidence for a small, positive effect of impervious surface cover on female 
body size—which itself is predictive of clutch size. Together, these results add to our understanding 
of how urbanization-driven changes in substrate and other habitat characteristics can influence the life 
history of stream salamanders.

Introduction

	 Urban sprawl in the southeastern United States is projected to more than double in the 
next several decades (Terando et al. 2014). As of 2009, 8% of small streams by length in the 
Piedmont ecoregion were found in watersheds with predominantly urban land use; by 2060, 
this number is expected to triple, jeopardizing the health of over 20,000 stream kilometers 
(Van Metre et al. 2019). Urbanization can have profound consequences in stream ecosys-
tems, including the burial of small streams; changes in temperature, nutrients, and pollutant 
concentrations; and changes in the frequency and intensity of floods (e.g., Espey et al. 1966, 
Paul and Meyer 2001, Walsh et al. 2005). Changes that result in stream degradation often 
drive declines in the biodiversity and abundance of native flora and fauna (McKinney and 
Lockwood 1999, McKinney 2002, Shochat et al. 2006, Van Metre et al. 2019). 
	 One ecologically important taxon that is threatened by stream degradation is salaman-
ders, which can be the most abundant vertebrates in stream and forest ecosystems and pro-
vide a link between aquatic and terrestrial food webs (e.g., Davic and Welsh 2004). In the 
southeastern United States, stream salamander communities are dominated in abundance 
and diversity by the lungless salamanders of the family Plethodontidae. Within these com-
munities, Eurycea cirrigera (Green) (Southern Two-lined Salamanders) are quite resilient 
to environmental changes and are often found in degraded streams from which other species 
have disappeared (Barrett and Guyer 2008, Rittenburg 2023). Many populations of this spe-
cies (and its close relatives in the larger Eurycea bislineata [Green] [Two-lined Salaman-
der] species complex) in urban streams are characterized by lower abundance (Wilson and 
Dorcas 2003, Miller et al. 2007, Price et al. 2011, Macklem et al. 2020) but faster growth 
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and metamorphosis (Barrett et al. 2010a, Murphy et al. 2016, Rittenburg and Pierson 2024) 
than populations in rural or less-urbanized streams, although support for these trends is not 
universal (Rizzo et al. 2016). One possible mechanism through which urbanization might 
influence these ecological and life history characteristics is the loss of microhabitat com-
plexity due to increased sedimentation and embeddedness of substrate—changes that are 
associated with decreased abundance in various stream salamanders (Orser and Shure 1972, 
Lowe and Bolger 2002, Smith and Grossman 2003).
	 Because Southern Two-lined Salamanders have a complex life history, it is important to 
consider the impacts of urbanization upon all life stages (Scheffers and Paszkowski 2012, 
Barrett and Price 2014). Females typically nest by attaching eggs in a single layer to the 
bottom of a cover object, preferentially in shallow water with cobble substrate (Guy et al. 
2004, Oswald et al. 2015). Furthermore, females often tend nests—which are sometimes 
laid communally with those from other females (e.g., Pierson and Bayona-Vásquez 2017)—
and the frequency of nest attendance and communal nesting may vary with urbanization (as 
estimated by time since development and forest cover) in a close relative (Macklem et al. 
2022). Here, we evaluated microhabitat availability, nest-site selection, and the influence of 
urbanization upon nesting behaviors and life history characteristics of Southern Two-lined 
Salamanders in Atlanta, Georgia.

Materials and Methods

Field-site description
	 We collected data from the same sites sampled in Rittenburg and Pierson (2024). In 
brief, these included 14 streams—found within public parks, private property, and golf 
courses—in the Peachtree Creek watershed in metro Atlanta, Georgia, USA. This watershed 
covers 240 km2, and as of 2011, it was 83% developed with 32% impervious surface cover 
(U.S. Geological Survey [USGS] 2019). 
Field methods and data collection
	 We visited each stream between 22 January 2022 and 04 February 2022. At each stream, 
we returned to the transects delimited by Rittenburg and Pierson (2024), who haphazardly 
selected the location of these 10 x 1 m transects, requiring only that they contain at least 
one riffle and follow the bank. However, we expanded our search effort at each stream to a 
larger 30 x 1 m stream transect that included within it the same 10 x 1 m transect delineated 
in Rittenburg and Pierson (2024). Within each 30 x 1 m transect, we started downstream 
and overturned all cover objects (e.g., rocks and logs) to search for nests and adult South-
ern Two-lined Salamanders. When we discovered a nest, we quickly took a photograph of 
the nest with a smartphone and attempted to capture any adult associated with it. We then 
replaced the cover object with the nest to its original orientation in the water. Following the 
capture of an adult, we placed the salamander in an 11 x 18 x 5.75 cm rectangular plastic 
container with an approximately 12.5 x 9 cm ColorChecker Passport Photo color palette 
standard (MSCCPPCC0319; X-Rite Inc.; MI, USA) and approximately 3 cm of stream 
water. Again using a smartphone, we took a photograph of the salamander from the dorsal 
view, making sure to the best of our ability that the container was level, glare was minimal, 
the entire color palette and salamander were visible, and the plane of the camera lens was 
parallel to the salamander. In the container or in a plastic bag, we checked for primary and 
secondary sexual characters (e.g., yolked ova in females, and the presence of cirri, mental 
glands, and/or hypertrophied jaw musculature in males) and noted the sex of each sala-
mander; when we could not discern sex, we recorded “unknown”. After data collection, we 
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immediately returned each salamander to the rock under which it was found. Following the 
search of each standardized transect, we opportunistically searched adjacent stream reaches 
for additional nests and salamanders to maximize our sample size for analyses that did not 
depend upon a standardized transect.
	 We collected stream habitat data from 25 random points within each 30 x 1 m tran-
sect (hereafter “random points”) and from all nests. To do this, we constructed a 0.5 x 
0.5 m PVC square quadrat, placed it in the stream, and used it to visually estimate the 
percent coverage of substrate type (i.e., inorganic, wood, vegetative debris, or artifi-
cial debris [e.g., trash or concrete]), percent coverage of substrate size (i.e., silt, sand, 
pebble, cobble, boulder, or bedrock; Wentworth 1922), and percent embeddedness within 
the quadrat (i.e., the percentage of coarse substrate buried in or surrounded by fine sub-
strate; Smith and Grossman 2003). We noted whether each point was found within a 
riffle (i.e., relatively shallow with high stream velocity), run (i.e., intermediate in depth 
and velocity), or pool (i.e., deeper with low stream velocity) (as in Pierson et al. 2021) 
and measured stream depth. To determine where the 25 random points should be, we 
used a random number generator to determine a linear distance from the beginning of 
each transect. For nests, we placed the quadrat so that the nest was centered within it. 

Measurements of clutch size and adult female size
	 To determine clutch size, two of us (LR and ED) manually counted eggs in the photographs 
of salamander nests after we had returned from the field so that the amount of time an adult 
salamander spent away from its nest could be minimized. If our counts differed, we reviewed 
the photographs together and reached a consensus. We adapted the methods outlined by 
Aragón-Sánchez et al. (2017) to approximate the snout-girdle length (SGL, the distance from 
the tip of the snout to the middle of the pelvic girdle) of adult female E. cirrigera from pho-
tographs using the ImageJ.JS online application v0.5.7 (Schneider et al. 2012, Ouyang et al. 
2019). We used SGL instead of snout-vent length (SVL) because the location of the distal end 
of the vent is hard to approximate from photographs of the dorsal side of Eurycea. We used 
the 50 mm ruler on the color palette visible in each photo as a standard for measuring SGL. 

Statistical analyses
	 For all statistical analyses, we used R v4.4.2 (R Core Team 2024). First, we evaluated 
whether nest sites were randomly distributed within streams by conducting a principal compo-
nents analysis (PCA) on the characteristics of all stream points (i.e., nests and random points); 
this analysis included scaled measurements (z-scores) of substratum type, substratum size, 
depth, and embeddedness. We included all nests within the standardized transects, but we ex-
cluded all sampling points with missing data (n = 1 random point) for any of these parameters. 
To test whether nests and random points were differentiated across the first PC axis (PC1), we 
conducted a Welch’s two-sample t-test to compare PC1 values between these two groups (α 
= 0.05). We also evaluated whether nests were randomly distributed among stream habitats 
(i.e., riffles, runs, and pools) by arranging counts of quadrat survey points in a contingency 
table—with stream habitats as columns and point type (i.e., nest or random) as rows—and 
comparing the distribution of habitats between random points and nests with a chi-square test 
(α = 0.05), excluding any points (n = 3 nests and 3 random points) that were missing these 
data. 
	 Second, we evaluated whether degree of urbanization influenced the quality of available 
nesting habitat and the number of nests we observed. To do this, we used percent impervious 
surface cover (ISC) as calculated in Rittenburg and Pierson (2024); that study used Stream-
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Stats v4.8.1 (USGS 2019), which derives ISC from watershed boundaries, digital elevation 
layers, and the National Land Cover Database. We then calculated the average embeddedness 
(i.e., the percentage of coarse substrate buried in or surrounded by fine substrate) for each 
stream, using only the values from the random points, and we summed the total number of 
nests found in each stream, counting only those found within the standardized transect. To 
evaluate whether urbanization alters the quality of nesting sites available, we modeled embed-
dedness as a function of ISC. Because both of these variables are bounded between 0% and 
100%, we rescaled both to be between 0 and 1 and used a generalized additive model (GAM) 
with a beta error distribution and logit link function using the packages gam v1.22-5 (Hastie 
2024) and mgcv v1.9-1 (Wood 2011). To evaluate whether the number of nests we observed 
was influenced by degree of urbanization, we modeled these nest counts as a function of ISC. 
We did this using a generalized linear model with a Poisson error distribution.
	 Third, we evaluated whether nesting behaviors (i.e., nest attendance and communal nest-
ing) varied with degree of urbanization. To do this, we used all nests (i.e., even those from 
outside of the standardized transects), and for each stream, we calculated the proportion of 
nests that were tended (i.e., that had at least one adult with them) and the proportion of nests 
that were laid communally (i.e., under the same rock as another nest). In the case of com-
munal nests, all were either discontiguous on the rock and/or at (subtly) different stages of 
development. We again rescaled variables to be between 0 and 1 and fit GAMs with beta error 
distributions using the methods described above. 
	 Finally, we evaluated the relationship between urbanization, female body size, and clutch 
size. First, we calculated the mean female SGL for each stream, using all captures of mature 
females that we made throughout the study, and then fit a linear model of female SGL as a 
function of ISC. Next, we used data from non-communal nests in which a single female was 
unambiguously present (n = 30) to evaluate the relationship between female size and clutch 
size by fitting a linear model of clutch size as a function of female SGL. All data and code are 
available from Zenodo (https://doi.org/10.5281/zenodo.15553592)

Results

	 We located and collected data from a total of 92 nests (71 within transects, 21 opportunis-
tically located nearby). In the PCA, the first axis (PC1) explained 23% of variation; random 
points were spread across the full range of PC1 values, while nests were clustered at lower 
PC1 values (Figure 1A). The loadings revealed that points with high PC1 values were deeper, 
had more sand and silt, and had higher embeddedness, while points with low PC1 values had 
more cobble (Figure 1B). Nests had lower PC1 scores (mean = −1.10 ± 0.85 [sd]) than random 
points (0.22 ± 1.69; P < 0.001). We found 45 nests in riffles, 17 nests in runs, and 6 nests in 
pools; in comparison, 116 random points were located in riffles, 162 in runs, and 68 in pools. 
Thus, nests were overrepresented in riffles (66% of nests) compared to the prevalence of riffles 
among random points (34%; χ2 = 25.57; P < 0.001). We found a positive relationship between 
ISC and embeddedness (coefficient [95% confidence interval] = 4.71 [0.94, 8.48]; P = 0.01; 
adjusted R2 = 0.16), indicating that streams with higher ISC have higher average embedded-
ness (Figure 2A). We found a negative relationship between ISC and nest counts (coefficient 
[95% CI] = −0.04 [−0.07, −0.02]; P < 0.001; McFadden’s pseudo R2 = 0.16), indicating that 
streams with higher ISC had lower nest counts (Figure 2B).
	 Although it appeared that nest attendance decreased with ISC (Figure 3A), this rela-
tionship was not statistically significant (coefficient [95% CI] = −4.00 [−9.46, 1.46]; P = 
0.15; adjusted R2 = 0.16). Similarly, we found no relationship between ISC and communal 
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Figure 1. a) The first two axes from a principal components analysis (PCA) of Southern Two-lined 
Salamander nest microhabitat data from Atlanta, Georgia. Symbol shapes and colors indicate whether 
observations were from random points within stream transects (i.e., representative of total available 
habitat) or from nests. 95% confidence ellipses for random points and nests are shown with solid gray 
and dotted black lines, respectively. b) Loadings from the PCA in (a), showing that high scores on 
PC1 were associated with greater sand and silt, depth, and embeddedness, and that low scores were 
associated with greater cobble.

Figure 2. a) The relationship between percent impervious surface cover for a watershed and the percent 
embeddedness of random points within stream transects in Atlanta, Georgia. Large black points indi-
cate averages per stream, from which the model was built. The solid black line shows the fitted model, 
and the dashed black lines indicate the 95% confidence interval. The smaller gray points indicate indi-
vidual measurements from each stream, from which the averages were calculated. b) The relationship 
between percent impervious surface cover and the number of Southern Two-lined Salamander nests 
that we encountered in standardized 30 x 1 m stream transects. Points indicate counts from each stream, 
the solid line shows the fitted model, and the dashed black lines indicate the 95% confidence interval.  
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nesting (coefficient [95% CI] = −0.94 [−6.55, 4.68]; P = 0.74; adjusted R2 = −0.10; Figure 
3B). We found a small positive relationship between ISC and female size (coefficient [95% 
CI] = 0.05 [0.01, 0.08]; P = 0.01; adjusted R2 = 0.42); that is, for every 20% increase in 
ISC, we estimated a 1 mm increase in average female SGL (i.e., ~3% of mean SGL; Fig-
ure 4A). We also found a positive relationship between female size and clutch size (coef-
ficient [95% CI] = 5.41 [2.76, 8.05]; P < 0.001; adjusted R2 = 0.36); for every increase of 1 
mm in SGL, we estimated an increase in clutch size of approximately 5 eggs (Figure 4B). 

Discussion

	 We found clear evidence that Southern Two-lined Salamanders select nesting sites in shallow 
riffles with cobble and low embeddedness. This is consistent with previous work also conducted 
in the Georgia Piedmont, but in a less urbanized environment (Guy et al. 2004). This microhabi-
tat selection may indicate a preference for environments with low sedimentation and high oxy-
gen availability, facilitating gas exchange for developing embryos (Mills and Barnhart 1999). 
Alternatively, it could reflect biotic factors like competition with other salamander species or 
the relative risks of predation in each habitat. In nearby streams where Southern Two-lined 
Salamanders are syntopic with Eurycea cf. wilderae Dunn (Blue Ridge Two-lined Salamander), 
the large majority of larvae collected from pools are Southern Two-lined Salamanders, while the 
large majority of larvae in riffles are Blue Ridge Two-lined Salamanders—a pattern that may be 
explained by character displacement in nest-site selection (Pierson et al. 2021). 
	 Consistent with our expectations, streams with higher ISC had higher embeddedness. For 
example, our model estimated approximately 45% embeddedness for streams with 5% ISC and 
77% embeddedness for streams with 35% ISC (Figure 2A). These results are concordant with 
broader evidence for increased sedimentation in urban streams—especially in streams with con-
tinuing disturbance and urbanization (e.g., Finkenbine et al. 2000, Paul and Meyer 2001). A few 
caveats and limitations of our study are worth mentioning. First, we chose to use ISC as a proxy 
measurement for urbanization. Although this approach is very common in urban ecology (e.g., 
Arnold and Gibbons 1996, Paul and Meyer 2001), it may not perfectly capture all the ways in 
which urbanization can alter stream environments (e.g., changes in pollutants or productivity), 
and our broader conclusions about urbanization should be interpreted with caution. Second, 
although we selected the placement of our stream transects haphazardly and interpret them as 
representative of the full streams, it is possible that this is not true—a potential bias perhaps 
amplified by practical need to sample within permitted areas (e.g., parks).
	 We also expected that nest density would be lower in more urbanized streams, and our 
results supported this prediction. Indeed, our model estimated nest density approximately five 
times higher in streams with 5% ISC than in streams with 35% ISC (Figure 2B). Although we 
interpret this as a logical consequence of the reduction in suitable nesting habitat, it could also 
reflect a lower overall population abundance—a variable that we did not measure, but which 
would be consistent with previous studies (Wilson and Dorcas 2003, Miller et al. 2007, Price et 
al. 2011, Macklem et al. 2020). Alternatively, our results could be misleading if confounded by 
differences in nesting phenology (e.g., if our sampling window was too early to detect nests in 
more urban streams). However, we view this as unlikely. Rittenburg and Pierson (2024) inferred 
a positive (but statistically insignificant) effect of ISC on stream temperature at these same sites, 
and across a broad geography, oviposition occurs earlier in warmer streams (Pierson et al. 2023). 
Thus, if there were such a bias, we would expect it to be in the opposite direction of our results. 
	 We found no conclusive evidence for a change in nest attendance across an urbaniza-
tion gradient. In Connecticut, Macklem et al. (2022) found that nest attendance in Eurycea 
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Figure 3. a) The relationship between percent impervious surface cover and the proportion of Southern 
Two-lined Salamander nests that had at least one adult found with them. b) The relationship between 
percent impervious surface cover and the proportion of Southern Two-lined Salamander nests that 
were laid communally. In both, points show proportions from individual streams, the solid black line 
shows the fitted model, and the dashed black lines indicate the 95% confidence interval. 

Figure 4. a) The relationship between percent impervious surface cover and the snout–girdle length 
(SGL) of adult female Southern Two-lined Salamanders. Large black points indicate averages per 
stream, from which the model was built. The solid black line shows the fitted model, and the dashed 
black lines indicate the 95% confidence interval. The smaller gray points indicate measurements of 
individual females, from which the averages were calculated. b) The relationship between female SGL 
and clutch size. The solid black line shows the fitted model, and the dashed black lines indicate the 
95% confidence interval.
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bislineata (Green) (Northern Two-lined Salamander) decreased with urbanization, with the 
proportion of clutches attended ranging between 24% and 80% among streams. We observed 
a similarly large range of values, but our negative point estimate of the relationship between 
ISC and nest attendance probability was not statistically significant. However, we caution that 
our sample size was small (n = 11 streams with nests), and our results may still be consistent 
with this previous study. Similarly, we found no relationship between ISC and the probability 
of communal nesting, although Macklem et al. (2022) did. This relationship was unexpected 
in that previous study, which assumed that any nest with >60 eggs was communal (Macklem 
et al. 2022). We are therefore hesitant to draw strong conclusions from the results of either 
study.
	 Southern Two-lined Salamanders are notable for their persistence in many urban environ-
ments. In our broader fieldwork (i.e., beyond the surveys described in this study), we have 
observed their near ubiquity in permanent streams in Atlanta—perhaps missing only from 
streams entirely lacking loose substrate (e.g., channelized streams fully encased in concrete), 
in which mortality following scouring events caused by heavy rainfall is likely very high 
(Barrett et al. 2010b). Although many factors likely help explain their persistence in urban en-
vironments, one intriguing possibility is the existence of compensatory life history responses. 
For example, Cayuela et al. (2022) demonstrated that although Bombina frogs have shorter 
lifespans in urban environments, they have higher reproductive rates—with the magnitude 
of this “compensatory recruitment” sufficient to overcome the lower adult survival. Several 
studies have now documented higher growth and developmental rates in urban salamanders 
(Barrett et al. 2010a, Murphy et al. 2016, Rittenburg and Pierson 2024), and here, we provide 
preliminary evidence for a very modest increase in adult female size in response to increased 
ISC, a proxy for urbanization. Because female size is predictive of clutch size, this could lead 
to higher per-capita reproductive rates. We emphasize that our results are far too preliminary 
to conclude that compensatory recruitment exists in these populations, but we encourage fu-
ture researchers to explore these ideas.
	 In conclusion, our results confirm that Southern Two-lined Salamanders preferentially nest 
in shallow riffles with cobble substrate. These results also demonstrate that embeddedness is 
higher and nest density is lower in streams with higher impervious surface cover (ISC). We found 
no conclusive evidence for a relationship between ISC and nest attendance or communal nest-
ing, but we found preliminary evidence for a small influence of ISC on female body size (female 
body size itself is predictive of clutch size). Together, these results add to our understanding of 
how potential measures of urbanization can influence the life history of stream salamanders. 
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