nena masthead
NENA Home Staff & Editors For Readers For Authors

Lepidoptera Host Records Accurately Predict Tree Use by Foraging Birds

Garrison Piel1, Douglas W. Tallamy1,*, and Desiree L. Narango2

1Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716. 2Department of Biology, University of Massachusetts, Amherst, MA 01003. *Corresponding author.

Northeastern Naturalist, Volume 28, Issue 4 (2021): 527–540

Abstract
The richness, abundance, and biomass of phytophagous arthropods like lepidopteran larvae is highly uneven among sympatric tree taxa. Optimal foraging theory predicts that predation pressure will be greatest on foraging substrates that support the highest abundance and/or diversity of prey, thus offering the greatest reward and maximizing fitness. Predation pressure can also vary with the nutritional or energetic needs of predators across the annual cycle. For insectivorous birds, prioritizing foraging effort in trees that support the most insect prey can benefit individuals by improving their foraging efficiency, condition, and ultimately fitness. However, we lack an understanding of how trees vary in their support of bird foraging activity across seasons and among plant taxa. We used plasticine caterpillar models to measure avian predation rates on 9 native North American tree species that vary in caterpillar-hosting potential. We measured avian predation rates during May, June, and October to compare caterpillar mortality in seasons that vary in life-history needs, abundance, and diversity of avian predators. We modeled daily survivorship and total mortality using Cox-proportional hazard models and logistic regression. We found that, across seasons, caterpillars had significantly higher predation rates on trees that are predicted by literature host records to support the most species of caterpillars (β = 0.22 ± 0.05, 95% CI = [0.13,0.32], z = 4.73, P < 0.0001). Caterpillars had the highest mortality in June, coinciding with avian breeding seasons, and the lowest rates in October, coinciding with fall migration and dispersal. Our study suggests that birds disproportionately forage on trees that have the highest potential to support caterpillar richness and presumably prey biomass. The observed pattern of non-random foraging has many implications; for example, the utility of using informed tree selection to improve bird foraging in managed ecosystems or potential negative implications to bird populations of forest-composition shifts due to climate change. Applying this information to habitat restoration will enable land managers to better support avian populations by planting trees that best support foraging substrates for insectivorous birds in managed ecosystems.

pdf iconDownload Full-text pdf (Accessible only to subscribers. To subscribe click here.)

 

 



Access Journal Content

Open access browsing of table of contents and abstract pages. Full text pdfs available for download for subscribers.

Issue-in-Progress: Vol. 31 (4) ... early view

Current Issue: Vol. 31(3)
NENA 31(3)

Check out NENA's latest monograph and the current Special Issue In Progress:

Monograph 25
NENA monograph 25

Special Issue 12
NENA special issue 12

All Regular Issues

Monographs

Special Issues

 

submit

 

subscribe

 

JSTOR logoClarivate logoWeb of science logoBioOne logo EbscoHOST logoProQuest logo