Regular issues
Special Issues

Southeastern Naturalist
    SENA Home
    Range and Scope
    Board of Editors
    Editorial Workflow
    Publication Charges

Other EH Journals
    Northeastern Naturalist
    Caribbean Naturalist
    Urban Naturalist
    Eastern Paleontologist
    Eastern Biologist
    Journal of the North Atlantic

EH Natural History Home

Seasonal Forage Availability and Diet for Reintroduced Elk in the Cumberland Mountains, Tennessee
Jason L. Lupardus, Lisa I. Muller, and Jason L. Kindall

Southeastern Naturalist, Volume 10, Issue 1 (2011): 53–74

Full-text pdf (Accessible only to subscribers.To subscribe click here.)


Site by Bennett Web & Design Co.
2011 SOUTHEASTERN NATURALIST 10(1):53–74 Seasonal Forage Availability and Diet for Reintroduced Elk in the Cumberland Mountains, Tennessee Jason L. Lupardus1,2, Lisa I. Muller1,*, and Jason L. Kindall1,3 Abstract - Cervus elaphus (Elk) were reintroduced into the Cumberland Mountains, Tennessee over a 3-year period beginning in December 2000. We radio-collared 159 Elk and monitored them by aerial telemetry from February 2001 to June 2003. Locations (n = 321) were used to develop a core herd home range (789-ha sampling area) to assess Elk seasonal forage use and availability. We monitored diet and resource availability from November 2003 to October 2004 by microhistological analysis of feces and vegetation sampling, respectively. We compared the relative availability of individual plant species (% cover) to the relative percentage of plant species found in fecal samples. A positive significant mean difference indicated plant species used in greater proportion to availability. Lolium arundinaceum (Tall Fescue) comprised 35.1% of the winter diet, and graminoids (65.9%) were the dominant forage class overall. The most selected graminoid was Andropogon gerardii (Big Bluestem). The diet shifted in the spring to a mixture of woody plants (28.1%), forbs (19.4%), and graminoids (38.4%). Carex spp. (sedges) and Juncus spp. (rushes) were the most selected graminoids. The highest seasonal use of forbs (45%) and legumes (23%) occurred during summer, with Impatiens spp. (jewelweed; 27%) as the dominant and most selected plant in the diet. The dominant fall forage class was woody plants (37.4%). Quercus spp. (oaks; vegetation and acorns 14.3%) were the most used woody plants with oak acorns comprising 9.7% of the Elk diet. We suggest that historic evidence, presence of native grasses, and Elk diets indicate that oak savannas could be an ideal habitat type for Elk in the reintroduction zone of Tennessee. Introduction The eastern subspecies Cervus elaphus canadensis Erxleben (North American Elk) once ranged throughout the southeastern US (Bryant and Maser 1982); however, that subspecies is now considered extinct (O’Gara and Dundas 2002). The last remaining North American Elk was reported in Tennessee in the 1860s (Ganier 1928). Overharvesting and habitat loss/changes were the major contributing factors for extinction of the subspecies (O’Gara and Dundas 2002). In the early 1900s, Cervus elaphus L. (Elk) reintroduction programs began in many eastern states from Louisiana to New Hampshire. Most Elk reintroductions failed due to crop depredation, disease, and poaching (O’Gara and Dundas 2002). More recently, Elk reintroductions have occurred in Arkansas, Michigan, Pennsylvania, Wisconsin, North Carolina, and Kentucky. 1Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. 2Current address - GA DNR Wildlife Resources Division, Alabany, GA 31721. 3Current address - Ozark Natural Science Center, Huntsville, AR 72740. *Corresponding author - 54 Southeastern Naturalist Vol. 10, No. 1 In 2000, the Tennessee Wildlife Resources Agency established a 271,145- ha area for Elk restoration in the Cumberland Mountains of eastern Tennessee (Fig. 1). Large tracts of continuous forests (87% deciduous) with sparse openings (12% primarily pasture and reclaimed coal strip mines), lack of production agriculture (1% cropland), and low human population densities were the primary factors considered when identifying a restoration zone suitable for Elk in Tennessee (TWRA 2000). Subsequently, Elk (n = 167) were released onto the Royal Blue Unit of the North Cumberland Wildlife Management Area (hereafter called the RB), TN over a 3-year period beginning in December 2000. Elk were translocated from Land Between the Lakes National Recreation Area, KY and Elk Island National Park, AB, Canada. Elk from Kentucky were initially populated from the source herd at Elk Island National Park (Larkin et al. 2004). Elk behavior, population growth rates, and fecundity are important for determining the success of reintroduction efforts and, in turn, are influenced by diet and nutrition (Cook 2002). Diets of Elk have been extensively studied in the western US, where vegetation primarily consists of coniferous forests, shrublands, and grasslands (Johnson et al. 2000, Korfhage et al. 1980, Kufeld 1973). The importance of deciduous forests in a landscape dominated by grasslands has been described by Clutton-Brock et al. (1982) for C. elaphus (Red Deer) in Europe; however, Elk diets in US eastern deciduous forests are poorly known. Additionally, many floral and faunal changes have occurred since Elk were extirpated from the eastern US. Past research conducted on the Elk diet from the eastern US occurred in Virginia (Baldwin and Patton 1938), Missouri (Murphy 1963), Michigan (Buss 1967, Spiegel et al. 1963), and Kentucky (Schneider et al. 2006); however, none assessed seasonal forage use and availability. Therefore, there was a lack of understanding of the seasonal diet composition of Elk in eastern forests essential to facilitate long-term sustainability of newly repatriated populations. In this study, we examined seasonal availability and use of plant species by Elk in Tennessee. Study Area The study area (789 ha) within the RB (20,235 ha) is located in Scott and Campbell counties, TN in the southern part of the Cumberland Mountain region (Smalley 1984). Jackson (2003) reported that the RB was formerly known as the Koppers Coal Reserve before the 1992 TWRA purchase. Strip, bench, and deep mining occurred in the 1930s–1950s, 1970s, and 1990s till present as the predominant means of coal extraction, which has left the area with a latticework of shelves or benches across the landscape (Jackson 2003). The study area consists of 90% deciduous forest and 10% grasslands (wildlife openings and mine reclamation sites; TWRA 2000). Cabrera (1969) described the major community types found within the deciduous forest as Acer saccharum Marsh (Sugar Maple) - Tulipifera liriodendron L. (Yellow Poplar) - Tilia Americana L (Basswood) - Aesculus flava Ait (Buckeye) in north-facing coves, Sugar Maple - Quercus rubra L. (Northern Red Oak) - Yellow Poplar - Robinia psuedoacacia L. (Black Locust) on north2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 55 and west-facing ridges and coves, and Quercus prinus L. (Chestnut Oak) - Black Locust on west- and southwest-facing ridges and coves. Most grasslands created by mining have been reclaimed with Lolium arundinaceum S.J. Darbyshire (Tall Fescue) and Lespedeza cuneata G. Don (Serecia Lespedeza). Other grasslands are seasonally planted with mixtures of Lolium spp. (rye grass), Triticum spp. (wheat), and Trifolium spp. and Melilotus spp. (clovers). Elevations on the study area range from 450 to 980 m within the RB (400 to 980 m). The 3–5 cm deep topsoils (TVA 1981) were developed from bedrock, shale, and siltstone, and are classified as acidic, loamy, and well-drained (Conner 2002). The climate is temperate with mean daily temperatures ranging from 0.8 °C in January to 24.2 °C in August (NOAA 2003). The annual mean temperature was 13.1 °C in 2003. The mean annual precipitation for 2003 was 172 cm, approximately 40 cm over the average for the area (NOAA 2003). Flooding and landslides are common in the area due to mining activities, steep gradients, long slopes, soil-water saturation, and frozen ground that increases subsurface water flow rates. Most slopes are 40% to 60%, but range from 10% to 100% (Smalley 1984). Methods Radiotelemetry Techniques described in Schemnitz (1994) were used for collecting Elk at Elk Island National Park by baiting with hay, capturing in corral traps, and moving animals to a holding facility for processing. A system of gates and squeeze chutes were used for disease testing, medication (Kreeger 1996), and radio transmitter application. Elk (n = 94 females and 65 males) were fitted with Lotek (Lotek Wireless, Inc., Newmarket, ON, Canada) and ATS (Advanced Telemetry Systems, Isanti, MN) VHF radio transmitters prior to release. We used aerial telemetry techniques described by White and Garrot (1990) to determine Elk locations at various times during the day and on different days of the week from February 2001 to June 2003. Fixed-wing aircraft were equipped with dual, wingstrut mounted, 2-element, H-antennas for aerial telemetry. A Lotek Suretrack 1000 receiver was used to detect each Elk transmitter. A handheld Garmin GPS unit (Garmin International, Olathe, KS) was used to record geographic coordinates when the aircraft was directly over each Elk. Telemetry error was estimated by locating 30 collars (transmitters) that were placed throughout the RB in locations unknown to the data collector. Elk handling techniques were approved by the University of Tennessee Institutional Animal Care and Use Committee (UTIACUC# 1068). Study area delineation We delineated our study area (Fig. 1) within the RB by developing a 50% kernel herd home range using 1450 Elk locations from February 2001 to June 2003 (Edge et al. 1987, Lupardus 2005). All location points for individual animals found exclusively within the RB were censored from analyses if radio contact was lost, the 56 Southeastern Naturalist Vol. 10, No. 1 collar was found dropped, or if the collar was found on a dead Elk. Therefore, Elk located exclusively within the RB boundary (n = 321) that remained alive and in Figure 1. The 789-ha study area (50% kernel home range) and 95% kernel home range (7100 ha) for reintroduced Elk exclusively using the Royal Blue Unit of the North Cumberland Wildlife Management Area, TN in the 271,145-ha Elk restoration zone (based on 321 Elk location points collected from February 2001–June 2003). The 1.6-km-wide buffer zone was developed by the Tennessee Wildlife Resources Agency where nuisance Elk will be tolerated. 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 57 radio contact for the duration of the monitoring were analyzed to estimate 95% and 50% kernel group home ranges using the Animal Movement Extension in Arc View 3.2® (ESRI, Redlands, CA; Hooge and Eichenlaub 1997) for Elk in the RB. The 50% kernel home range was chosen as the study area for sampling because it is considered as a core center of animal activity; furthermore, the biological significance of the 95% kernel home range can be unreliable (Dickson and Beier 2002, Seaman et al. 1999). Additionally, we were restricted to the RB for sampling due to lack of access in surrounding private lands. Sawyer et al. (2006) also used the distribution Figure 2. Locations of 150 vegetation sampling points throughout the 3 major cover types within the 789-ha Elk study area (50% kernel home range), November 2003 to October 2004, Royal Blue Unit of the North Cumberland Wildlife Management Area, TN. Sample points were developed in Random Point Generator Extension for Arc View 3.2®. 58 Southeastern Naturalist Vol. 10, No. 1 of radio-collared animals to determine the available habitat at the study-area level (McClean et al. 1998). Our study area included 70% (n = 63; 17 males and 46 females) of the Elk herd (n = 114). Vegetation sampling We determined major habitat types in the study area from 1995 land-cover maps developed by TWRA (1997) in compliance with the National Gap Analysis Program. Classification was performed on Landsat TM Imagery. The major cover types in our study area were deciduous forest and grassland. The importance of edge habitat to Elk is well documented (Harper 1971, Larkin et al. 2004, Skovlin et al. 2002, Witmer and deCalesta 1983), and Kufeld (1973) listed many important plants utilized by western Elk that were classified as disturbance or edge species. Therefore, we added an additional cover type called “edge” for the analysis. Delineating edge locations and widths is difficult due to variation in vegetative structure, topography, and connectivity, but edges can be functionally defined by wildlife use (Lidicker 1999, Yahner 1988). Preliminary vegetation sampling and presence of edge forage species observed during on-site plant surveys were used to determine edge width. A buffer distance of 10 m around fields, both sides of roads (unimproved and improved), and grasslands was considered the edge-cover type, as plant communities differed within this area. We conducted preliminary sampling in summer 2003 to determine the sample size necessary for distinguishing differences in vegetation composition at P ≤ 0.05. Square 1-m2 samples of percent cover were taken 5 m from the plot center in the 4 cardinal directions at each randomly placed preliminary plot (n = 23). We recorded percent cover of forbs, grasses, and seedlings within each 1-m2 sample, and we determined plant species variability from plots (n = 23; σ2 = 34.51). Preliminary data, logistical constraints, and sampling costs were used to determine the number of vegetation plots sampled (n = 150). We generated random points throughout the 3 major cover types using Random Point Generator 1.28 (Jenness Enterprises, Flagstaff, AZ) Extension for Arc View 3.2®. The proportional area of each cover type was used to derive the distribution of sampling points. Deciduous forest (n = 123), grassland (n = 14), and edge (n = 13) plots were randomly located within our study area and sampled in proportion to their areas (Fig. 2). We conducted vegetation sampling seasonally from November 2003 until October 2004 as described by Kufeld (1973): summer (June–August), fall (September–November), winter (December–February), and spring (March– May). We sampled each plot once per season. Major habitat assessments were conducted at each plot as described by Nixon et al. (1970) to identify all plants that could be consumed by Elk. All species were identified and percent cover was determined for saplings and shrubs (1-m to 2-m height) in a 10-m2 square plot surrounding the plot center. In the deciduous forest and grassland areas, vegetation was sampled within 1-m2 quadrants located 5 m from the plot center in the 4 cardinal directions. We recorded all forbs, grasses, 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 59 and seedlings within each 1-m2 sample. Edge sample plots (1 m2) were taken at 5 m and 10 m from the plot center in each linear direction parallel to adjacent roads or fields (Fig. 3). Ocular estimates for percent cover of each plant species was conducted by the same person for all samples. We used a 10-factor prism at each plot center for measuring basal area for all trees >10 cm dbh to determine the tree-canopy composition and estimate Figure 3. Illustration of forest, grassland, and edge samples where vegetation measurements were conducted at each plot within the 789-ha Elk study area (50% kernel home range), November 2003 to October 2004, Royal Blue Unit of the North Cumberland Wildlife Management Area, TN (plots and subplots not drawn to scale). 60 Southeastern Naturalist Vol. 10, No. 1 hardwood mast yields. We identified and recorded the number of tree species at each plot. We used methods described by Whitehead (1969) to estimate the available acorn crop based on basal area, data from the mast crop survey (TWRA 2005), and mean acorn mass compiled from 14 Quercus spp. (oaks) in the southeastern US (Long and Jones 1996). Oak acorn availability was estimated from mean oak basal area (7.21 m2/ha) and the mast crop survey (5.3 out of 10) rating (Whitehead 1969). A conservative estimate of viable acorns (52% or 17 per square 1-m2 sample) was determined from Whitehead (1969). Fecal sampling We collected fresh Elk scat when traveling between vegetation plots within the study area from November 2003 to October 2004. Elk movements, food mixing by rumination, and distribution of collected scat throughout the study area provided relatively unbiased samples. Microhistological analysis of feces provides an efficient and less biased method when compared to visual feeding observations, pen or restricted feeding, browse surveys, or stomach contents to determine diet composition. Dearden et al. (1975) developed correction factors using rumen fluid from domestic ruminants for in vitro digestion to adjust diet composition because minute plant fragments might be overestimated in the actual diet. Forb estimates may be lower and grass and woody species estimates may be higher when correction factors are not applied. However, other research indicates that correction-factor application may introduce bias because digestion rates differ among individuals, plants species, and plant growth stages (Alipayo et al. 1992, Barker 1986, Bartolome et al. 1995, Gill et al. 1983, Hanley et al. 1985). Therefore, we chose not to apply correction factors in our study. Scat was considered fresh on the basis of rich color, moist consistency, and strong odor (Kirchhoff and Larsen 1998, Weckerly and Ricca 2000). Pellets were not collected if they were touching surrounding plant tissues. Pellets were placed in plastic bags and frozen. We analyzed 30 pellet groups during each season (120 samples per year). A minimum of 5 individual pellets from each scat pile was needed for adequate analysis (Kirchoff and Larsen 1998). Pellet samples were sent to the Washington State Habitat Lab (Pullman, WA) for microhistological analysis (Davitt and Nelson 1980). Plant material within the pellets were described to species when possible. Plant identification and percentage composition were determined by examining 1 slide of 50 field views per fecal sample. All plants viewed microscopically were compared to reference slides. The Washington State Habitat Lab prepared reference slides for this geographical area from previous studies (Castleberry et al. 2002) and from plant species collected in the RB. Data analysis Vegetation data from all plots were pooled by season to determine the seasonal availability (% cover) of individual plant species. We used repeated measures ANOVA to compare the mean availability of individual plant species 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 61 (independent variable) to the mean percentage of plant material found in fecal samples (n = 30) to test for disproportionate use (P ≤ 0.05). Tests between forage availability and diet composition were based on linearly independent pairwise comparisons between means to determine significant difference each season. Positive mean differences indicated plants were used in greater proportion than their availability. Forages were not considered selected when the significant mean difference (SMD) was negative. “Selection” is here used to describe disproportionate use of plant species and is relevant only to available forages within our study site. All data analyses were performed using SPSS version 12.0 (SPSS Inc., Chicago, IL). Results Radiotelemetry Mean telemetry error was 261 m (n = 30, SE = 24.5). The 95% and 50% kernel home ranges covered 7100 ha and 789 ha, respectively (Fig. 1). The 50% kernel home range was used as our study area and represented a statistical center of Elk activity. Our study area was chosen because of size, abundant Elk activity, and concentration of data points needed for effective habitat sampling (Worton 1989). Winter diet Winter Elk diets had the lowest number of species of plants (n = 45; Appendix 1). Graminoids (65.9% of plant matter) were the dominant forage class (Fig. 4), with the most frequently consumed being Tall Fescue (35.1%). Polystichum acrostichoides Schott (Christmas Fern) comprised 12% of the diet composition. The largest positive SMD (7.82) found in the diet was Andropogon gerardii Vitman (Big Bluestem). Other selected graminoids were Tall Fescue, Schizachyrium scoparium Nash (Little Bluestem), Echinochloa crusgalli Beauv (Barnyard Grass), Triticum spp. (wheat), and Dactylis glomerata L. (Orchard Grass). Rubus spp. (briars) were used little when compared to availability (SMD = -21.2). Spring diet The spring diet had the highest number of forage items identified compared to all other seasons (n = 57). Although the diet shifted in the spring to a mixture of woody plants (28.1%) and forbs (19.4%), graminoids (38.4%) remained the dominant forage class. Elaeagnus spp. (autumn olive) was the most highly selected woody plant (SMD = 10.1). Other woody plants selected were Juniperus virginiana L. (Eastern Red Cedar), oaks, and Pinus spp. (pines). Carex spp. (sedges) and Juncus spp. (rushes) were the most frequently consumed (12.7 %) and selected (SMD = 8.4) graminoids. Impatiens spp. (jewelweed) were the only forbs selected (SMD = 4.6). Acer spp. (maples) were the least selected (SMD = -5.5) among all forage items overall. 62 Southeastern Naturalist Vol. 10, No. 1 Summer diet Forb use increased to 45% in the summer. Jewelweed constituted 27% of the diet and was the most selected forage species (SMD = 24.2). Legumes comprised 23% of the diet, and clovers were highly selected (SMD = 12.2). Big Bluestem was the only graminoid selected (SMD = 2.4). Autumn olive, oaks, and Lindera benzoin L. (Spice Bush) were selected woody plants. Briars (SMD = -10.9) and maples (SMD = -6.2) were the least selected of all used forages. Fall diet The dominant forage class in the fall diet was woody plants (37.4%). Oaks (vegetation and acorns) were the most used woody plant (14.3%), with oak acorns comprising 9.7% of the diet. Autumn olive was also a highly used (8.7%) and selected woody plant (SMD = 7.7). Tall Fescue comprised 10.8% of the fall diet Figure 4. Major seasonal forage classes for Elk diets determined from microhistological analysis of plant material in feces within the 789-ha study area (50% kernel home range), November 2003 to October 2004, Royal Blue Unit of the North Cumberland Wildlife Management Area, TN. 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 63 and constituted nearly half of the overall graminoid forage class (24%); however, Tall Fescue was not selected (SMD = -8.8). Big Bluestem was the only graminoid selected during fall (SMD = 2.48). The combined legume diet composition was 19.3% for clovers and Lespedeza spp. (lespedezas). Briars were the least selected forage overall (SMD = -10.2). Discussion Elk diets have been extensively documented in the western US for a variety of habitat types (Cook 2002, Kufeld 1973). The association of Elk with large grasslands of the central plains and western states could inaccurately classify them as grazers (Cook 2002). Elk have been classified as intermediate feeders due to their body size, rumination, and morphology, and perhaps the most accurate description of Elk food habits is opportunistic (Hofmann 1989). An opportunistic foraging strategy may facilitate reintroduction. Grassland areas in our study area were created during reclamation of past coal mining activities. Topsoil removal, storage activity, grading operations, and hydroseeding reclamation efforts reduced the native seed bank dramatically (TVA 1981). Tall Fescue, lespedezas, and autumn olives were the 3 most common species groups used for reclamation of mined areas and roads in the RB (TVA 1981). Elk selected Tall Fescue during winter probably because it was the only species available in large quantities; however, Schneider et al. (2006) found Elk in Kentucky used Tall Fescue heavily during all seasons. Other species of fescue have been considered valuable forage for Elk in other portions of the species’ range (Cook 2002, Kufeld 1973). Selection for Tall Fescue and other grasses in the winter diet may be related to costs and benefits of travel to potentially more nutritious forage (Wickstrom et al. 1984). Many of the graminoids (e.g., Big Bluestem, sedges/rushes, Orchard Grass, Little Bluestem) were available in smaller quantities, but were found in juxtaposition to Tall Fescue. Christmas Fern was a substantial component (12%) of the winter diet, but it was used less (SMD = -7.9) than its widespread availability. Elk maximize digestible energy from changing seasonal forage intake by optimizing time in the rumen to increase completeness of digestion (Merrill 1994). As such, we believe that during winter Elk used any available green forage in the area. Jost et al. (1999) reported that Elk in the Burwash region of Ontario ate jewelweed in relative proportions to what was available. Williams et al. (2000) found that jewelweed was highly preferred by Odocoileus virginianus Zimmermann (White-tailed Deer) in Pennsylvania. Jewelweed was a highly selected plant during summer in the RB. Jewelweed plants are succulent, and they are primarily found in cool, damp, closed-canopy areas. Cook (2002) stated that succulent and nutritious vegetation was used to a great extent by Elk during calving and the subsequent neonatal period, and Korfhage et al. (1980) suggested that Elk in Oregon selected forages at their most succulent stage. Peak lactation for Elk yielded up to 4 L of milk per day (Cook 2002), and water comprised 81% of milk (Robbins 1993). Thus, jewelweed is likely an important component of Elk diets during 64 Southeastern Naturalist Vol. 10, No. 1 summer, when physiological demands require nutritious forage with high water contents. More research into the nutritional components of native plants will be fundamental to understanding how Elk and other herbivores utilize plant species for homeostatic regulation. We classified clover and lespedeza spp. as legumes rather than forbs to better understand the dynamics of artificially planted forages in the Elk diet. However, these items were classified broadly as forbs in other diet studies (Cook, 2002, Kufeld 1973, Schneider et al. 2006). The forb composition in the diet would have been substantially higher in the summer (45% to 68%) and fall (10.0% to 29.3%) if we had categorized legumes as forbs. Our finding of large amounts of clovers in the summer and fall diets of Tennessee Elk is similar to those of studies conducted elsewhere (Cook 2002, Kufeld 1973, Schneider et al. 2006). Legumes in our study were common along roadsides, reclaimed mines, and artificially placed food plots (TVA 1981). Some forage items in the diet were not expected. Elk use of lichens and mosses has been found in Alaska (Kirchoff and Larsen 1998); however, we believe that the low levels of lichens, mosses, and insects found in the diet were arbitrarily eaten as Elk foraged on more important foods. We identified Zea mays L. (Corn) kernels, which was not planted on the study site or in nearby areas (≤8 km), in the seasonal diets of Elk. The RB is a large area that receives hunting pressure throughout the year, and we believe that Corn found in the Elk diet was from baiting and artificial feeding of deer and Meleagris gallopavo L. (Eastern Wild Turkey) in our study area. Elk viability in deciduous forests may be somewhat dependent upon the hard mast (Baldwin and Patton 1938, Murphy 1963). Acorns composed 9.7% of the fall diet, which could be a substantial nutritional value due to their high calories and fat content (Kirkpatrick and Pekins 2002). Documented mastdependent species utilize acorns to increase body fat reserves for the winter (Pelton 1989, McShea 2000, Wentworth et al. 1992). Hard-mast production significantly affects natality, mortality, and overall population dynamics for White-tailed Deer (Wentworth et al. 1990) and Ursus americanus Pallas (Black Bears) in the southern Appalachians (Pelton 1989). Moreover, interspecific competition for acorns may influence populations of other species (McShea and Schwede 1993, Ostfeld et al. 1996). Forage consumption for 1 adult Elk is equivalent to 3 adult White-tailed Deer (Habitat Monitoring Committee 1996), and interspecific competition and dietary overlap has been noted between Odocoileus spp. (deer) and Elk (Gogan and Barrett 1995, Hobbs et al. 1983, Kirchhoff and Larsen 1998). Elk herbivory can cause plant community changes (Hobbs 1996, Ripple and Beschta 2003). Large densities of Elk may reduce habitat quality for other species (Lindzey et al. 1997). One plant species of concern is oaks. We found that Elk used oaks in all seasons. Oak regeneration may be limited by the lack of fire regimes (Van Lear and Waldrop 1990), deer herbivory (Buckley et al. 1998), and acorn loss from Curculio spp. (acorn weavils), which can range from 10–100% 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 65 for Quercus alba L. (White Oak) and 2–92% for Quercus rubra L. (Southern Red Oak) (Gibson 1972, 1982). Elk may function as another competitor that could affect oak communities. The importance of maintaining a mature oak forest component was evident from diet selection. Historically, native Elk in Tennessee foraged in a completely different type of habitat than what is found today. Ramsey (1853) described portions of the Cumberland Mountains as oak savannas enriched with deer, Elk, and Bison bison L. (Bison) in 1783. We found native warm-season grasses throughout the study site where an arson fire burned nearly 5 years previous. As evidence of this bygone landscape, we believe that these grasses developed from the remnant seed bank where past mining activity did not occur. We suggest that the historic accounts, native grasses, and the Elk diet indicate that oak savannas could be an ideal habitat type for reintroduced Elk in eastern Tennessee. Periodic fires, grazing, or drought would maintain oak savannas (Guyette et al. 2002, Komarek 1965). Prescribed burning and other silvicultural techniques should be used to promote oak regeneration and potentially enhance the quantity and quality of native grasses and forbs (Van Lear and Waldrop 1990). Additionally, further monitoring of Elk resource selection is needed to fully understand Elk foraging dynamics in oak communities. Our results indicated that Elk used many plant species disproportionately to their availability. We believe some of the highly used plants in the diet could be indicative of nutritional needs. Cook (2002) suggested that spring and fall forages are more important nutritionally than winter forages for Elk. Elk in our study appeared to opportunistically forage on plants that were different from their source habitats. Forage opportunities associated with oak forest communities may promote Elk population growth in eastern Tennessee. As such, we believe that oak savannas would benefit the Tennessee Elk herd. Knowledge of the seasonal Elk diet in eastern forests can be used to better assess potential Elk habitat and understand how future Elk populations will disperse and inhabit new areas in eastern deciduous forests. Acknowledgments We thank the Rocky Mountain Elk Foundation, Tennessee Wildlife Resources Agency, and the University of Tennessee, Knoxville for funding and support. We are grateful for pilots B. Roten (Tennessee Wildlife Resources Agency) and C. Proffit (Knoxville Flight Training Academy). We want to thank D.S. Buckley, J.D. Clark, M.A. O’Neil, and J.B. Wilkerson for their support and expertise on various aspects of this project. We also thank volunteers from the student chapter of the University of Tennessee Wildlife and Fisheries Society. Literature Cited Alipayo, D., R. Valdez, J.L. Holechek and M. Cardenas. 1992. Evaluation of microhistological analysis for determining ruminant diet botanical composition. Journal of Range Management 45:148–152. 66 Southeastern Naturalist Vol. 10, No. 1 Baldwin, W.P., and C.P. Patton. 1938. A preliminary study of the food habits of Elk in Virginia. North American Wildlife Conference 3:747–755. Barker, R.D. 1986. An investigation into the accuracy of herbivore diet analysis. Australian Wildlife Resources 13:559–568. Bartolome, J., J. Franch, M. Gutman, and N.G. Seligman. 1995. Technical note: Physical factors that influence fecal analysis estimates of herbivore diets. Journal of Range Management 48:267–270. Bryant, L.D., and C. Maser. 1982. Classification and distribution. Pp. 1–59, In J.W. Thomas and D.E. Toweill (Eds.). Elk of North America. Stackpole Books, Harrisburg, PA. 720 pp. Buckley, D.S., T.L. Sharik, and J.G. Isebrands. 1998. Regeneration of Northern Red Oak: Positive and negative effects of competitor removal. Ecology 79:65–78. Buss, M.E. 1967. Habitat utilization and early winter food habitats of Michigan Elk. M.Sc. Thesis. University of Michigan, Ann Arbor, MI. 97 pp. Cabrera, H. 1969. Patterns of species segregation as related to topographic form and aspect. M.Sc. Thesis. University of Tennessee, Knoxville, TN. 111 pp. Castleberry, N.L., S.B. Castleberry, W.M. Ford, P.B. Wood, and M.T. Mengak. 2002. Allegheny Woodrat (Neotoma magister) food habits in the central Appalachians. American Midland Naturalist 147:80–92. Clutton-Brock, T., F.E. Guinness, and J.D. Albon. 1982. Red Deer Behavior and Ecology of Two Sexes. University of Chicago Press, Chicago, IL. 378 pp. Conner, C.T. 2002. Soil survey of Campbell County, Tennessee. United States Department of Agriculture, Natural Resources Conservation Service, Lincoln, NE. 89 pp. Cook, J.G. 2002. Nutrition and Food. Pp. 259–349, In D.D. Toweill and J.W. Thomas (Eds.). North American Elk Ecology and Management. Smithsonian Institution Press, Washington, DC. 962 pp. Davitt, B., and J.R. Nelson. 1980. A method of preparing plant epidermal tissue for use in fecal analysis. Washington State University College Agriculture Resources, Pullman, WA. Circular 06248. 4 pp. Dearden, B.L., R.E. Pegau, and R.M. Hansen. 1975. Precision of microhistological estimates of ruminant food habits. Journal of Wildlife Management 39:402–407. Dickson, B.G., and P. Beier. 2002. Home-range and habitat selection by adult Cougars in southern California. Journal of Wildlife Management 66:1235–1245. Edge, W.D., C L. Marcum, and S.L. Olson-Edge. 1987. Summer habitat selection by Elk in western Montana: A multivariate approach. Journal of Wildlife Management 51:844–851. Ganier, A.V. 1928. History of native mammals. Journal of the Tennessee Academy of Sciences 3:10–22. Gibson, L.P. 1972. Insects that damage White Oak acorns. United States Department of Agriculture, Forest Service, Upper Darby, PA. Research Paper NE-220. 7 pp. Gibson, L.P. 1982. Insects that damage Northern Red Oak acorns. United States Department of Agriculture, Forest Service, Broomall, PA. Research Paper NE-492. 6 pp. Gill, R.B., L.H. Carpenter, R.M. Bartmann, D.L. Baker, and G.G. Schoonveld. 1983. Fecal analysis to estimate Mule Deer diets. Journal of Wildlife Management 47:902–915. Gogan, P.J., and R.H. Barrett. 1995. Elk and deer diets in coastal prairie-scrub mosaic, California. Journal of Range Management 48:327–335. 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 67 Guyette, R.P., R.M. Muzika, and D.C. Dey. 2002. Dynamics of an anthropogenic fire regime. Ecosystems 5:472–486. Habitat Monitoring Committee. 1996. Procedures for environmental monitoring in range and wildlife habitat management. Version 5.0. British Columbia Ministry of Environment, Lands and Parks and British Columbia Ministry of Forests, Victoria, BC, Canada. 225 pp. Hanley, T.A., D.E. Spalinger, K.A. Hanley, and J.W. Schoen. 1985. Relationships between fecal and rumen analysis for deer diet assessments in southeastern Alaska. Northwest Science 59:10–16. Harper, J.A. 1971. Ecology of Roosevelt Elk. Oregon State Game Commission, Portland, OR. PR W-59-R. 44 pp. Hobbs, N.T. 1996. Modification of ecosystems by ungulates. Journal of Wildlife Management 60:695–713. Hobbs, N.T., D.L. Baker, and R.B. Gill. 1983. Comparative nutritional ecology of montane ungulates during winter. Journal of Wildlife Management 47:1–16. Hofmann, R.R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 78:443–457. Hooge, P.N., and B. Eichenlaub. 1997. Animal movement extension to ArcView version 1.1. Alaska Biological Science Center, United States Geological Survey, Anchorage, AK. Jackson, K.J. 2003. Environmental Impact Statement: Koppers Coal reserve management plan. United States Federal Register Environmental Documents 68(94):26371–26373. Johnson, B.K., J.W. Kern, M.J. Wisdom, S.L. Findholt, and J.G. Kie. 2000. Resource selection and spatial separation of Mule Deer and Elk during spring. Journal of Wildlife Management 64:685–697. Jost, M.A., J. Hamr, I. Filion, and F.F. Mallory. 1999. Forage selection by Elk in habitats common to the French River-Burwash region of Ontario. Canadian Journal of Zoology 77:1429–1438. Kirchhoff, M.D., and D.N. Larsen. 1998. Dietary overlap between native Sitka Blacktailed Deer and introduced Elk in southeast Alaska. Journal of Wildlife Management 62:236–242. Kirkpatrick, R.L., and P.J. Pekins. 2002. Nutritional value of acorns for wildlife. Pp. 173–181 In Oak Forest Ecosystems: Ecology and Management for Wildlife. W.J. Mc- Shea and W.M. Healy (Eds.). Johns Hopkins University Press, Baltimore, MD. Komarek, E.V. 1965. Fire ecology-grasslands and man. Proceedings, Tall Timbers Fire Ecology Conference 4:169–220. Korfhage, R.C., J.R. Nelson, and J.M. Skovlin. 1980. Summer diets of Rocky Mountain Elk in northeastern Oregon. Journal of Wildlife Management 44:746–750. Kreeger, T.J. 1996. Handbook of Wildlife Chemical Immobilization. International Wildlife Veterinary Services, Inc., Laramie, WY. Kufeld, R.C. 1973. Foods eaten by the Rocky Mountain Elk. Journal of Range Management 26:106–113. Larkin, J.L., J.J. Cox, M.W. Wichrowski, M.R. Dzialak, and D.S. Maehr. 2004. Influences on release-site fidelity of translocated Elk. Restoration Ecology 12:97–105. 68 Southeastern Naturalist Vol. 10, No. 1 Lidicker, W.Z., Jr. 1999. Responses of mammals to habitat edges: An overview. Landscape Ecology 14:333–343. Lindzey, F.G., W.G. Hepworth, T.A. Mattson, and A.F. Reeves. 1997. Potential for competitive interactions between Mule Deer and Elk in the western US and Canada: A review. Wyoming Cooperative Fish and Wildlife Research Unit, Laramie, WY. 82 pp. Long, T.J., and R.H. Jones. 1996. Seedling growth strategies and seed size effects in fourteen oak species native to soil moisture habitats. Trees 11:1–8. Lupardus, J.L. 2005. Seasonal forage availability and diet of reintroduced Elk in the Cumberland Mountains, Tennessee. M.Sc. Thesis. University of Tennessee, Knoxville,TN. 98 pp. McClean, S.A., M.A. Rumble, R.M. King, and W.L. Baker. 1998. Evaluation of resourceselection methods with different definitions of availability. Journal of Wildlife Management 62:793–801. McShea, W.J. 2000. The influence of acorn crops on annual variation in rodent and bird populations. Ecology 81:228–238. McShea, W.J., and G. Schwede. 1993. Variable acorn crops: Responses of White-tailed Deer and other mast consumers. Journal of Mammalogy 74:999–1006. Merrill, E.H. 1994. Summer foraging ecology of Wapiti (Cervus elaphus roosevelti) in the Mount St. Helens blast zone. Canadian Journal of Zoology 72:303–311. Murphy, D.A. 1963. A captive Elk herd in Missouri. Journal of Wildlife Management 27(3): 411–414. National Oceanic and Atmospheric Administration (NOAA). 2003. Climatological data annual summary Tennessee 108(13). Available online at http://www1.ncdc. Accessed 1 June 2004. Nixon, C.M., M.W. McClain, and K.R. Russell. 1970. Deer food habits and range characteristics in Ohio. Journal of Wildlife Management 34:870–886. O’Gara, B.W., and R.G. Dundas. 2002. Distribution: Past and present. Pp. 67–119, In D.D. Toweill and J.W. Thomas (Eds). North American Elk Ecology and Management. Smithsonian Institution Press, Washington, DC. 962 pp. Ostfeld, R.S., C.G. Jones, and J.O. Wolff. 1996. Of mice and mast. Bioscience 46:323–330. Pelton, M.R. 1989. The impacts of oak mast on Black Bears in the southern Appalachians. Pp. 7–11, In C.E. McGee (Ed.). Proceedings of the Workshop: Southern Appalachian Mast Management. University of Tennessee, Knoxville, TN. 5 pp. Ramsey, J.G.M. 1853. The Annals of Tennessee to the End of the Eighteenth Century. John Russell Publishing, Charleston, WV. 744 pp. Ripple, W.J., and R.L. Beschta. 2003. Wolf reintroduction, predation risk, and Cottonwood recovery in Yellowstone National Park. Forest Ecology and Management 184:299–313. Robbins, C.T. 1993. Wildlife Feeding and Nutrition. Academic Press, San Diego, CA. 343 pp. Sawyer, H., R.M. Nielson, F. Lindzey, and L.L. McDonald. 2006. Winter habitat selection of Mule Deer before and during development of a natural gas field. Journal of Wildlife Management 70:396–403. 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 69 Schemnitz, S.D. 1994. Capturing and handling wild animals. Pp. 106–124, In T.A. Bookhout (Ed.). Research and Management Techniques for Wildlife and Habitats. The Wildlife Society, Bethesda, MD. 740 pp. Schneider, J, D.S. Maehr, K.J. Alexy, J.J. Cox, J.L. Larkin, and B.C. Reeder. 2006. Food habits of reintroduced Elk in Southeastern Kentucky. Southeastern Naturalist 5:535–546. Seaman, D.E., J.J. Millspaugh, B.J. Kernohan, G.C. Brundige, K.J. Raedeke, and R.A. Gitzen. 1999. Effects of sample size on kernel home range estimators. Journal of Wildlife Management 63:739–747. Smalley, G.W. 1984. Classification and evaluation of forest sites in the Cumberland Mountains. United States Forest Service, Southern Forest Experiment Station (General Technical Report SO-050), New Orleans, LA. 84 pp. Skovlin, J.M., P. Zager, and B.K. Johnson. 2002. Elk habitat selection and evaluation. Pp. 531–555, In D.D. Toweill and J.W. Thomas (Eds.). North American Elk Ecology and Management. Smithsonian Institution Press, Washington, DC. 962 pp. Spiegel, L.E., C.H. Huntly, and G.R. Berber. 1963. A study of the effects of Elk browsing on woody plant succession in northern Michigan. Jack Pine Warbler 41:68–72. Tennessee Valley Authority (TVA). 1981. Rapid restoration of biological productivity to coal surface mines: Second annual biological monitoring report. Tennessee Valley Authority, Norris, TN. Cooperative Agreement TV-47794A. 75 pp. Tennessee Wildlife Resources Agency (TWRA). 1997. Tennessee land use/land cover. Available online at Accessed 1 September 2003. TWRA. 2000. Proposal: Elk restoration in the northern Cumberland Plateau, Tennessee. Tennessee Wildlife Resources Agency, Nashville, TN. 14 pp. TWRA. 2005. Big game harvest report Tennessee Wildlife Resources Agency (Technical Report 05-01), Nashville, TN. 299 pp. Van Lear, D.H., and T.A. Waldrop. 1990. History, uses, and effects of fire in the Appalachians. United States Forest Service, Southeastern Forest Experiment Station (General Technical Report SE-54), Asheville, NC. 19 pp. Weckerly, F.W., and M.A. Ricca. 2000. Using presence of sign to measure habitats used by Roosevelt Elk. Wildlife Society Bulletin 28:146–153. Wentworth, J.M., A.S. Johnson, and P.E. Hale. 1990. Influence of acorn use on nutritional status and reproduction in the Southern Appalachians. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 44:142–154. Wentworth, J.M., A.S. Johnson, P.E. Hale, and K.E. Kammermeyer. 1992. Relationships of acorn abundance and deer herd characteristics in the Southern Appalachians. Southern Journal of Applied Forestry 16:5–8. White, G.C., and R.A. Garrott. 1990. Analysis of Wildlife Radio-tracking Data. Academic Press, Inc. San Diego, CA. Whitehead, C.J. 1969. Oak mast yields on wildlife management areas in Tennessee. Tennessee Wildlife Resources Agency, Nashville, TN. 10 pp. Wickstrom, M.L., C.T. Robbins, T.A. Hanley, D.E. Spalinger, and S.M. Parish. 1984. Food intake and foraging energetics of Elk and Mule Deer. Journal of Wildlife Management 48:1285–1301. 70 Southeastern Naturalist Vol. 10, No. 1 Williams, C.E., E.V. Mosbacher, and W.J. Moriarity. 2000. Use of Turtlehead (Chelone glabra L.) and other herbaceous plants to assess intensity of White-tailed Deer browsing on Allegheny Plateau riparian forests, United States. Biological Conservation 92:207–215. Witmer, G.W., and D.S. deCalesta. 1983. Habitat use by female Roosevelt Elk in the Oregon coast range. Journal of Wildlife Management 47:933–939. Worton B.J. 1989. A review of models of home range for animal movements. Ecological Modeling 38:277–298. Yahner, R.H. 1988. Changes of wildlife communities near edges. Conservation Biology 2:333–339. 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 71 Appendix 1. Mean percentage (x̅ %) of Elk diet and mean difference (MD) between availability (% cover) and percentage of Elk diet. Positive mean differences represent plants used in greater proportion to availability, and negative mean difference represent plants used in lesser proportion to availability. Diet composition determined from microhistological analysis of plant material in feces in 789-ha core area (50% kernel home range), and availability determined from plant composition and cover collected from November 2003 to October 2004, Royal Blue Unit of the North Cumberland Wildlife Management Area, TN. NA = not applicable because items were not in the diet, unknown, or considered to be arbitrarily eaten (“other” category). *Significance (P < 0.05). Winter (n = 30) Spring (n = 30) Summer (n = 30) Fall (n = 30) Plant taxa x̅ % SE MD x̅ % SE MD x̅ % SE MD x̅ % SE MD Woody plants Tilia americana L. (American Basswood) 0.0 NA NA 0.7 0.3 0.7 0.0 NA NA 0.0 NA NA Fagus grandifolia Ehrhart (American Beech) 0.0 NA NA 0.1 0.1 0.0 0.0 NA NA 0.1 0.1 -0.1 Ilex opaca Aiton (American Holly) 0.0 NA NA 0.0 NA NA 0.0 NA NA 0.1 0.1 0.0 Vaccinium spp. (blueberry) 0.5 0.1 -1.2 2.5 0.5 1.2 0.5 0.2 -0.6 0.7 0.2 -0.7 Prunus spp. (cherry) 0.4 0.1 0.2 0.2 0.2 -0.1 0.1 0.1 -0.1 0.1 0.1 0.8 Sambucus canadensis L. (Common Elderberry) 0.1 0.1 -0.1 0.0 NA NA 0.0 NA NA 0.5 0.2 0.5 Aralia spinosa L. (Devil’s Walking Stick) 0.1 0.1 7.8* 0.2 0.2 0.2 0.0 NA NA 0.0 NA NA Tsuga canadensis L. (Eastern Hemlock) 0.0 NA NA 0.1 0.1 0.0 0.0 NA NA 0.0 NA NA Cercis canadensis L. (Eastern Redbud) 0.2 0.2 0.6 0.4 0.1 -0.5 0.3 0.3 -0.3 0.7 0.3 0.5 Juniperus virginiana L. (Eastern Redcedar) 0.0 NA NA 3.2 1.1 3.5* 0.0 NA NA 0.3 0.2 0.3 Cornus florida L. (Flowering Dogwood) 0.1 0 0.1 0.0 NA NA 0.8 0.5 0.8 0.6 0.3 0.5 Celtis spp. (hackberry) 0.1 0 0.3 0.0 NA NA 0.0 NA NA 0.0 NA NA Carya spp. (hickory) 0.5 0.3 1.9* 0.3 0.1 -0.3 0.2 0.1 -0.4 0.1 0.1 -1.3 Magnolia spp. (magnolia) 0.0 NA NA 0.1 0.1 -0.1 0.1 0.1 -0.1 0.5 0.2 0.2 Viburnum acerifolium L. (Maple Leaf Viburnum) 1.0 0.2 0.6 0.1 0.1 -0.3 0.0 NA NA 1.0 0.4 1.0 Acer spp. (maple) 0.2 0.1 -3.3* 0.4 0.1 -5.5* 0.2 0.0 -6.2* 0.7 0.5 -5.3* Ceanothus americanus L. (New Jersey Tea) 0.3 0.1 0.3 0.6 0.3 0.2 0.0 NA NA 0.2 0.1 -0.4 Quercus spp. (oak) 2.1 0.4 0.8 3.4 0.9 2.5* 3.1 0.5 1.6* 4.6 0.9 3.3* Quercus spp. (oak acorns) 0.0 NA NA 0.0 NA NA 0.0 NA NA 9.7 2.6 6.7* Elaeagnus spp. (autumn olive) 1.7 0.7 1.8* 9.7 1.8 10.1* 2.3 0.5 2.4* 8.7 2.5 7.7* Pinus spp. (pine) 0.9 0.4 1.0 2.0 0.7 2.1* 0.1 0.1 0.1 0.3 0.2 0.4 Rhododendron spp. (rhododendron) 0.1 0.1 0.4 0.9 0.4 0.6 0.0 NA NA 0.7 0.4 -0.5 Rosa spp. (rose) 1.5 0.3 1.2 1.8 0.7 1.7 0.0 NA NA 0.1 0.0 0.0 Sassafras albidum Nutt. (Sassafras) 0.1 0.1 -0.5 0.0 NA NA 0.5 0.3 -1.2 0.0 NA NA 72 Southeastern Naturalist Vol. 10, No. 1 Winter (n = 30) Spring (n = 30) Summer (n = 30) Fall (n = 30) Plant taxa x̅ % SE MD x̅ % SE MD x̅ % SE MD x̅ % SE MD Oxydendrum arboreum L. (Sourwood) 0.0 NA NA 0.0 NA NA 0.5 0.3 -0.8 0.0 NA NA Lindera benzoin L. (Spice Bush) 1.3 0.7 1.5 0.3 0.2 0.4 1.5 0.5 1.6* 3.9 1.0 4.3 Rhus spp. (sumac) 2.6 0.8 1.3 0.1 0.1 -3.0* 0.0 NA NA 3.5 1.0 4.0* Betula lenta L. (Sweet Birch) 0.0 NA NA 1.0 0.4 1.0 1.0 0.7 0.7 0.0 NA NA Fraxinus americana L. (White Ash) 0.0 NA NA 0.0 NA NA 0.0 NA NA 0.3 0.3 0.1 Liriodendron tulipifera L. (Yellow Poplar) 0.0 NA NA 0.0 NA NA 0.1 0.1 -2.6* 0.0 NA NA Unknown woody spp. 1.3 0.2 NA 2.2 0.3 NA 2.0 0.3 NA 3.1 0.3 NA Total woody spp. 15.1 28.1 13.3 37.4 Forbs Heuchera spp. (alumroot) 0.0 NA NA 0.0 NA NA 0.1 0.1 -1.1 0.0 NA NA Phytolacca americana L. (American Pokeweed) 0.2 0.2 0.0 0.0 NA NA 0.5 0.3 -0.7 0.0 NA NA Aster spp. (aster) 0.0 NA NA 1.2 0.4 0.6 0.9 0.2 0.4 0.3 0.1 -0.6 Galium spp. (bedstraw) 0.0 NA NA 1.0 0.4 -1.3 0.9 0.3 0.3 0.1 0.1 -0.2 Monarda spp. (bee balm) 0.0 NA NA 0.0 NA NA 0.2 0.2 0.0 0.0 NA NA Rubus spp. (briar) 0.5 0.3 -21.2* 1.0 0.2 -3.0* 1.3 0.4 -10.9* 1.4 0.2 -10.2* Centrosema virginianum L. (Butterfly Pea) 1.1 0.3 1.0 1.1 0.5 0.2 2.6 0.7 0.6 1.4 0.4 0.1 Potentilla spp. (cinquefoil) 0.0 NA NA 0.5 0.2 -0.8 1.0 0.5 0.0 0.2 0.1 -0.6 Erigeron annuus L. (Eastern Daisy Fleabane) 0.0 NA NA 0.2 0.1 0.1 0.6 0.2 0.4 0.0 NA NA Smilacina racemosa L. (False Solomon's Seal) 0.0 NA NA 0.6 0.3 -1.3 0.1 0.1 -0.9 0.0 NA NA Solidago spp. (goldenrod) 0.1 0.0 -0.1 0.2 0.1 -2.3* 0.6 0.2 -4.0* 0.8 0.3 -3.6* Smilax spp. (greenbrier) 0.1 0.1 -6.6 0.3 0.2 -3.1* 1.0 0.4 -1.4 0.3 0.2 -3.1* Impatiens spp. (jewelweed) 0.0 NA NA 7.9 2.6 4.6* 27 3.7 24.2* 0.0 NA NA Arisaema triphyllum L. (Jack in the Pulpit) 0.0 NA NA 0.0 NA NA 0.7 0.2 -0.1 0.0 NA NA Chenopodium album L. (Lambs Quarters) 0.0 NA NA 0.1 0.1 0.1 0.0 NA NA 0.2 0.2 -0.1 Ipomoea spp. (morning glory) 0.2 0.2 0.4 0.1 0.1 0.1 0.0 NA NA 0.1 0.1 0.1 Allium spp. (wild onion) 0.0 NA NA 0.1 0.1 0.0 0.3 0.2 0.3 0.0 NA NA Mitchella repens L. (Partridge Berry) 0.9 0.3 1.0 0.0 NA NA 0.2 0.1 0.1 0.9 0.4 3.3* Chamaecrista fasciculate Michx. (Partridge Pea) 0.0 NA NA 0.8 0.3 -0.1 0.0 NA NA 0.0 NA NA Lathyrus spp. (pea) 0.6 0.2 0.5 0.0 NA NA 0.5 0.2 -0.1 0.1 0.1 -0.3 Antennaria spp. (pussytoes) 0.0 NA NA 0.2 0.1 0.1 0.6 0.2 0.6 0.1 0.1 0.0 2011 J.L. Lupardus, L.. Muller, and J.L. Kindall 73 Winter (n = 30) Spring (n = 30) Summer (n = 30) Fall (n = 30) Plant taxa x̅ % SE MD x̅ % SE MD x̅ % SE MD x̅ % SE MD Ambrosia spp. (ragweed) 0.0 NA NA 0.1 0.1 0.1 0.3 0.1 -1.3 0.1 0.0 -0.1 Euonymus americana L. (Strawberry Bush) 0.2 0.1 -0.7 0.7 0.4 0.0 0.7 0.2 0.0 0.5 0.3 -0.2 Helianthus spp. (sunflower) 0.0 NA NA 0 NA NA 0.8 0.2 -4.3* 0.0 NA NA Vicia spp. (vetch) 0.1 0.1 0.1 0.3 0.1 0.2 0.4 0.2 0.4 0.0 NA NA Geranium maculatum L. (Wild Geranium) 0.0 NA NA 0.9 0.3 -0.2 1.5 0.3 1.5 0.1 0.1 0.1 Unknown forbs 0.6 0.2 NA 2.1 0.4 NA 2.5 0.3 NA 3.4 0.4 NA Total forbs 4.6 19.4 45 10.0 Ferns Polystichum acrostichoides Schott. (Christmas Fern) 12.0 2.1 -7.9* 2.5 1.0 -4.4* 0.2 0.2 -5.1* 0.6 0.4 -7.6* Athyrium filix L. (Lady Fern) 0.5 0.2 1.1 0.4 0.2 -2.9* 0.3 0.2 -2.0* 0.0 NA NA Unknown ferns 0.6 0.2 NA 4.3 2.0 NA 0.6 0.1 NA 0.4 0.2 NA Total ferns 13.1 7.2 1.1 1.0 Graminoids Echinochloa crusgalli Beauv. (Barnyard Grass) 0.2 0.2 3.8* 0.0 NA NA 0.4 0.4 0.1 0.0 NA NA Andropogon gerardii Vitman (Big Bluestem) 8.5 1.2 7.8* 4.6 1.1 4.9* 2.3 0.6 2.4* 2.4 0.7 2.5* Setaria spp. (foxtail) 0.5 0.2 0.7 0.2 0.1 0.2 0.0 NA NA 0.3 0.2 0.3 Microstegium japonicum Nees (Japan Grass) 0.0 NA 0.4 0.0 NA NA 0.0 NA NA 0.1 0.1 -3.3* Schizachyrium scoparium Nash (Little Bluestem) 4.9 0.8 4.9* 1.4 0.4 1.3 0.2 0.1 0.1 1.1 0.4 1.0 Dactylis glomerata L. (Orchard Grass) 3.3 0.6 3.0* 2.5 0.6 2.6* 1.1 0.4 1.2 1.2 0.5 1.3 Panicum spp. (panic grass) 3.9 0.5 1.5 1.0 0.3 -1.6 0.5 0.2 -2.7* 1.0 0.3 -2.4* Carex spp. (sedge) and Juncus spp. (rush) 1.4 0.2 -2.8* 12.7 3.1 8.4* 1.3 0.4 -1.3 2.0 0.4 -1.3 Sorghum spp. (sorghum) 0.7 0.3 0.9 0.9 0.2 0.7 0.1 0.1 -0.1 0.8 0.4 0.9 Lolium arundinacea S.J. Darbyshire (Tall Fescue) 35.1 2.8 5.6* 10.7 1.9 -2.8* 5.0 1.2 -4.7* 10.8 2.3 -8.8* Phleum pratense L. (Timothy Grass) 2.3 0.6 0.4 1.8 0.9 1.8 0.5 0.3 -1.1 0.9 0.3 -0.4 Triticum spp. (wheat) 3.5 0.7 3.0* 1.0 0.4 0.6 0.9 0.4 0.7 1.5 0.6 1.3 Unknown grasses 1.6 0.2 NA 1.6 0.2 NA 1.7 0.3 NA 1.9 0.3 NA Total Graminoids 65.9 38.4 14.0 24.0 Crops Zea mays L. (Corn) 0.0 NA NA 0.2 0.1 0.2 0.6 0.3 0.7 0.6 0.3 0.7 Total crops 0.0 0.2 0.6 0.6 74 Southeastern Naturalist Vol. 10, No. 1 Winter (n = 30) Spring (n = 30) Summer (n = 30) Fall (n = 30) Plant taxa x̅ % SE MD x̅ % SE MD x̅ % SE MD x̅ % SE MD Legumes Trifolium and Melilotus spp. (clovers) 0.3 0.1 -4.0* 2.4 0.8 -0.7 15 2.7 12.2* 6.5 1.3 5.0* Lespedeza spp. (lespedeza) 0.2 0.1 0.2 1.6 0.7 -2.6* 7.5 1.4 0.9 12.8 3.5 5.7* Total legumes 0.5 4 23 19.3 Other Lichen/moss 0.1 0.1 NA 0.2 0.1 NA 0.2 0.1 NA 0.4 0.1 NA Insect 0.1 0.1 NA 0.1 0.1 NA 0.7 0.2 NA 0.2 0.1 NA Unknown 0.6 0.2 NA 0.2 0.1 NA 2.5 0.3 NA 4.0 0.1 NA Number of plants 45 57 55 54